Thanks to their biocompatibility, biodegradability, injectability and self-setting properties, calcium phosphate cements (CPCs) have been the most economical and effective biomaterials of choice for use as bone void fillers. They have also been extensively used as drug delivery carriers owing to their ability to provide for a steady release of various organic molecules aiding the regeneration of defective bone, including primarily antibiotics and growth factors. This review provides a systematic compilation of studies that reported on the controlled release of drugs from CPCs in the last 25 years. The chemical, compositional and microstructural characteristics of these systems through which the control of the release rates and mechanisms could be achieved have been discussed. In doing so, the effects of (i) the chemistry of the matrix, (ii) porosity, (iii) additives, (iv) drug types, (v) drug concentrations, (vi) drug loading methods and (vii) release media have been distinguished and discussed individually. Kinetic specificities of
in vivo
release of drugs from CPCs have been reviewed, too. Understanding the kinetic and mechanistic correlations between the CPC properties and the drug release is a prerequisite for the design of bone void fillers with drug release profiles precisely tailored to the application area and the clinical picture. The goal of this review has been to shed light on these fundamental correlations.
Attempts to synthesize and/or theoretically predict new superhard materials are the subject of an intense research activity. The trials to deposit them in the form of films have just began. WB(2) (77 wt % WB(2) and 23 wt % WB(4)) and WB(4) (65 wt % WB(4) and 35 wt % WB(2)) polycrystalline bulk samples were obtained in this work via electron beam synthesis technique and, subsequently, used as targets for films preparation by the pulsed laser deposition method. The targets were irradiated by a frequency-doubled Nd:glass laser with a pulse duration of 250 fs. The films grown on SiO(2) substrates at 600 °C were characterized by X-ray diffraction, scanning electron and atomic force microscopies, and Vickers microhardness technique. The deposited films are composed of WB(4). The intrinsic film hardness, calculated according to the "law-of-mixtures" model, lies in the superhardness region 42-50 GPa.
A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells.
The prepared bioactive Si-HAp coatings could be considered for applications in orthopedics and dentistry to improve the osteointegration of bone implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.