Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions.
We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson's disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211-235, 2004), was developed. The original Rubin and Terman model was able to reproduce both the physiological and pathological activities of STN, GPi, GPe and thalamo-cortical (TC) relay cells. In the present study, we introduced a representation of the direct pathway of the BGS, allowing a more complete framework to simulate DBS and to interpret its network effects in the BGS. Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS.
One of the major concerns of recent studies is the correct discrimination between vegetative and minimally conscious state as the distinction between these two conditions has major implications for subsequent patient rehabilitation. In particular, it would be advantageous to establish communication with these patients. This work describes a procedure using EEG to detect brain responses to imagery instruction in patients with disorders of consciousness. Five healthy subjects and five patients with different disorders of consciousness took part in the study. A support vector machine classifier applied to EEG data was used to distinguish two mental tasks (Imagery Trial) and to detect answers to simple yes or no questions (pre-Communication Trial). The proposed procedure uses feature selection based on a nested-leave-one-out algorithm to reduce the number of electrodes required. We obtained a mean classification accuracy of 82.0% (SD 5.1%) for healthy subjects and 84.6% (SD 9.1%) for patients in the Imagery Trial, and a mean classification accuracy of 80.7% (SD 11.5%) for healthy subjects and 91.7% (SD 7.4%) for patients in the pre-Communication Trial. The subset of electrodes selected was subject and session dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.