IntroductionAssessment of episodic memory has been traditionally used to evaluate potential cognitive impairments in senior adults. Typically, episodic memory evaluation is based on personal interviews and pen-and-paper tests. This article presents the design, development and a preliminary validation of a novel digital game to assess episodic memory intended to overcome the limitations of traditional methods, such as the cost of its administration, its intrusive character, the lack of early detection capabilities, the lack of ecological validity, the learning effect and the existence of confounding factors.Materials and MethodsOur proposal is based on the gamification of the California Verbal Learning Test (CVLT) and it has been designed to comply with the psychometric characteristics of reliability and validity. Two qualitative focus groups and a first pilot experiment were carried out to validate the proposal.ResultsA more ecological, non-intrusive and better administrable tool to perform cognitive assessment was developed. Initial evidence from the focus groups and pilot experiment confirmed the developed game’s usability and offered promising results insofar its psychometric validity is concerned. Moreover, the potential of this game for the cognitive classification of senior adults was confirmed, and administration time is dramatically reduced with respect to pen-and-paper tests.LimitationsAdditional research is needed to improve the resolution of the game for the identification of specific cognitive impairments, as well as to achieve a complete validation of the psychometric properties of the digital game.ConclusionInitial evidence show that serious games can be used as an instrument to assess the cognitive status of senior adults, and even to predict the onset of mild cognitive impairments or Alzheimer’s disease.
We present a system that analyzes data extracted from the microbloging site Twitter to detect the occurrence of events and obstacles that can affect pedestrian mobility, with a special focus on people with impaired mobility. First, the system extracts tweets that match certain predefined terms. Then, it obtains location information from them by using the location provided by Twitter when available, as well as searching the text of the tweet for locations. Finally, it applies natural language processing techniques to confirm that an actual event that affects mobility is reported and extract its properties (which urban element is affected and how). We also present some empirical results that validate the feasibility of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.