A general and complete theoretical model of the time-resolved thermal mirror method for the measurement of thermo-optical-mechanical properties of solid materials is developed. The laser-induced temperature profile in a sample and its thermoelastic surface displacement are derived. The center intensity of a probe beam at the detector plane is calculated using the Fresnel diffraction theory. Additionally, simplified models for high and low optical absorption samples are presented, and the suitability of the simplified models is also analyzed. The influence of experimental parameters on the sensitivity of the thermal mirror method is discussed for the optimization of the experimental apparatus. The presented model and the experimental technique can be used to quantitatively determine the physical properties of transparent and opaque solids.
Energy transfer processes in Yb3+-Tb3+ co-doped, low-silica calcium aluminosilicate glasses were analyzed. Luminescence and time-resolved measurements were used to study upconversion processes, such as Yb-Tb cooperative sensitization, Yb-Yb cooperative luminescence, and Yb-Tb cross relaxation. The quantum cross relaxation efficiency was evaluated as a function on the Yb3+ concentration, and the maximum estimated value was approximately 51%. In addition, the intensity of the upconversion luminescence from the Tb3+:5D4 level decreased by two orders of magnitude comparing the value at room temperature with that at 123 K. As a consequence, Yb-Yb cooperative luminescence around 500 nm became comparable with the intensity of upconversion from the Tb3+:5D4 level. Furthermore, a dependence of the upconversion kinetics luminescence on temperature was observed. The upconversion rise time was constant and equal to 65 μs for temperatures between 296 to 473 K and decreased from 65 to 19 μs, without variation in the decay part, when the temperature was lowered from 296 to 123 K. These results were explained by a phonon-assisted cooperative sensitization process for the population of the Tb3+:5D4 level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.