A 4 mm-aperture hole-patterned liquid crystal (LC) lens has been fabricated using a LC mixture, which consisted of rutile titanium dioxide (TiO2) nanoparticles (NPs) and nematic LC E7, for the first time. The TiO2 NP dopant improves the addressing and operation voltages of the LC lens significantly because it strengthens the electric field surrounding the TiO2 NP and increases the capacitance of lens cell. Unlike the doping of common colloidal NPs, that of rutile TiO2 NPs increases the phase transition temperature and birefringence of the LC mixture, thereby helping enhance the lens power of LC lens. In comparison with a pure LC lens, the TiO2 NP-doped one has approximately 50% lower operation voltage because of the strengthened electric field around the NPs and has roughly 2.8 times faster response time because of the decreased rotational viscosity of the LC mixture and the increased interaction between the LC molecules by the NP dopants. Notably, the doping of rutile TiO2 NPs improves the operation voltage, tunable focusing capability, and response time of LC lens simultaneously. Meanwhile, this method does not degrade the focusing and lens qualities. The imaging performances of TiO2 NP-doped LC lens at various voltages are demonstrated practically by tunable focusing on three objectives at different positions. These results introduce NP in the application of LC lenses.
In this study, the response time of a 4 mm-aperture hole-patterned liquid crystal (HLC) lens has been significantly improved with doping of N-benzyl-2-methyl-4-nitroaniline (BNA) and rutile titanium dioxide nanoparticle (TiO2 NP) nanocomposite. The proposed HLC lens provides the focus and defocus times that are 8.5× and 14× faster than the pristine HLC lens, respectively. Meanwhile, the focus and defocus times of the proposed HLC lens reach the order of millisecond. Result shows that the synergistic effect of BNA and TiO2 NP induces a 78% decrement in the viscosity of pristine LC mixture that significantly shortens the focus and defocus times of HLC lens. The remarkable decrement in viscosity is mainly attributed to spontaneous polarization electric fields from the permanent dipole moments of the additives. Besides, the strengthened electric field surrounding TiO2 NP assists in decreasing the focus time of HLC lens. The focus and defocus times of HLC lens are related to the wavefront (or phase profile) bending speed. The time-dependent phase profiles of the HLC lenses with various viscosities are calculated. This result shows the decrease in wavefront bending time is not simply proportional to viscosity decrement. Furthermore, the proposed HLC lens emerges a larger tunable focus capability within smaller voltage interval than the pristine HLC lens.
A see-through display based on a planar holographic waveguide with a tunable focal plane is presented. A negative liquid crystal lens is attached on the outcoupling location of the waveguide to manipulate the image distance. The continuous tunable range for the focal length is from negative infinity to −65 cm. The demonstrated prototype system provides 10.5° field-of-view (FOV) for the images not locating at infinity. The FOV for the images not locating at infinity is limited by the diameter of the liquid crystal lens. The lens function of the liquid crystal lens is polarization dependent. By controlling the polarization states of the real scene and the input information image, the liquid crystal lens keeps the see-through function for a real scene and simultaneously plays the role of a negative lens for the input information image. Compared to the see-through display system with a single focal plane, the presented system offers a more comfortable augmented reality (AR) experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.