Severe upper limb paresis can represent an immense burden for stroke survivors. Given the rising prevalence of stroke, restoration of severe upper limb motor impairment remains a major challenge for rehabilitation medicine because effective treatment strategies are lacking. Commonly applied interventions in Germany, such as mirror therapy and impairment-oriented training, are limited in efficacy, demanding for new strategies to be found. By translating brain signals into control commands of external devices, brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) represent promising, neurotechnology-based alternatives for stroke patients with highly restricted arm and hand function. In this mini-review, we outline perspectives on how BCI-based therapy can be integrated into the different stages of neurorehabilitation in Germany to meet a long-term treatment approach: We found that it is most appropriate to start therapy with BCI-based neurofeedback immediately after early rehabilitation. BCI-driven functional electrical stimulation (FES) and BMI robotic therapy are well suited for subsequent post hospital curative treatment in the subacute stage. BCI-based hand exoskeleton training can be continued within outpatient occupational therapy to further improve hand function and address motivational issues in chronic stroke patients. Once the rehabilitation potential is exhausted, BCI technology can be used to drive assistive devices to compensate for impaired function. However, there are several challenges yet to overcome before such long-term treatment strategies can be implemented within broad clinical application: 1. developing reliable BCI systems with better usability; 2. conducting more research to improve BCI training paradigms and 3. establishing reliable methods to identify suitable patients.
The development of brain–computer interface-controlled exoskeletons promises new treatment strategies for neurorehabilitation after stroke or spinal cord injury. By converting brain/neural activity into control signals of wearable actuators, brain/neural exoskeletons (B/NEs) enable the execution of movements despite impaired motor function. Beyond the use as assistive devices, it was shown that—upon repeated use over several weeks—B/NEs can trigger motor recovery, even in chronic paralysis. Recent development of lightweight robotic actuators, comfortable and portable real-world brain recordings, as well as reliable brain/neural control strategies have paved the way for B/NEs to enter clinical care. Although B/NEs are now technically ready for broader clinical use, their promotion will critically depend on early adopters, for example, research-oriented physiotherapists or clinicians who are open for innovation. Data collected by early adopters will further elucidate the underlying mechanisms of B/NE-triggered motor recovery and play a key role in increasing efficacy of personalized treatment strategies. Moreover, early adopters will provide indispensable feedback to the manufacturers necessary to further improve robustness, applicability, and adoption of B/NEs into existing therapy plans.
Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.