Molybdenum disulfide (MoS2) is known for its versatile properties and hence promising for a wide range of applications. The fabrication of high-quality MoS2 either as homogeneous films or as two-dimensional...
This paper presents a novel one-step method for the periodical nanopatterning and reduction of graphene oxide (GO). Self-organized periodic structures of reduced graphene oxide (rGO) appear on GO surfaces upon processing with a femtosecond laser at fluences slightly higher than the fluence needed for reduction of the GO. This indicates that the periodic pattern is formed either simultaneously with or due to the reduction of the GO. The laser-induced reduction of GO was identified by sheet resistance measurements, Raman and X-ray photoelectron spectroscopy. This fast and simple method to both reduce and periodically structure GO offers a variety of possible applications in printed and flexible electronics.
Email address: kasischke@lat.rub.de (Maren Kasischke) The aim of this study is to assess femtosecond laser patterning of graphene in air and in vacuum for the application as source and drain electrodes in thin-film transistors (TFTs). The analysis of the laser-patterned graphene with scanning electron microscopy, atomic force microscopy and Raman spectroscopy showed that processing in vacuum leads to less debris formation and thus re-deposited carbonaceous material on the sample compared to laser processing in air. It was found that the debris reduction due to patterning in vacuum improves the TFT characteristics significantly. Hysteresis disappears, the mobility is enhanced by an order of magnitude and the subthreshold swing is reduced from S sub = 2.5 V/dec to S sub = 1.5 V/dec.
We experimentally study the occurrence of pattern formation during the slot-die coating of lowviscosity nearly Newtonian liquids onto Polyethylenterephthalat (PET)-substrates. In particular, it is demonstrated that with increase of the coating speed a homogeneous coating becomes unstable with respect to periodic stripe patterns. Thereby, depending on the liquid viscosity, the stripes can be oriented parallel or perpendicular with respect to the coating direction. Mixed states do also occur. The spatial period of perpendicular [parallel] stripes increases [decrease] with the coating speed. The dependence of the effect on various control parameters of slot-die coating is investigated.Finally, a simple theoretical model based on the hydrodynamics of thin films of partially wetting liquids is analysed. Comparing the results to the experiments, conclusions are drawn regarding the acting instability and pattern formation mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.