The formation of ozone through photochemical oxidation of alcohols, aldehydes, ketones, acids, and hydrocarbons, such as are present in gasoline, in the presence of small quantities of nitrogen oxides has been demonstrated. Ozone production without the addition of nitrogen oxides has been observed in the photochemical oxidation of biacetyl, bibutyryl, pyruvic acid, and butyl nitrite. The ozone produced in these reactions was identified by chemical and physical methods. The ozone formation is attributed to a peroxide radical chain reaction. The release of large quantities of hydrocarbons to the air and the simultaneous presence of nitrogen oxides from combustion processes explains the relatively high ozone content, and consequent severe rubber cracking, in the Los Angeles area. These findings should be considered in planning rubber storage facilities. In view of the irritating properties of the products formed by this photochemical oxidation, both hydrocarbons and nitrogen oxides should be considered as potential irritants when they occur simultaneously in the air at low concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.