Abstract. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.
Volcanic eruptions have a significant impact on climate when they inject sulfur gases into the stratosphere. The dynamics of eruption plumes is also affected by climate itself, as atmospheric stratification impacts plumes' height. We use an integral plume model to assess changes in volcanic plume maximum rise heights as a consequence of global warming, with atmospheric conditions from an ensemble of global climate models, using three representative concentration pathways (RCP) scenarios. Predicted changes in atmospheric temperature profiles decrease the heights of tropospheric and lowermost stratospheric volcanic plumes and increase the tropopause height, for the RCP4.5 and RCP8.5 scenarios in the coming three centuries. Consequently, the critical mass eruption rate required to cross the tropopause increases by up to a factor of 3 for tropical regions and up to 2 for high‐latitude regions. A number of recent lower stratospheric plumes, mostly in the tropics (e.g., Merapi, 2010), would be expected to not cross the tropopause starting from the late 21st century, under RCP4.5 and RCP8.5 scenarios. This effect could result in a ≃5–25% decrease in the average SO2 flux into the stratosphere carried by small plumes, the frequency of which is larger than the rate of decay of volcanic stratospheric aerosol, and a ≃2–12% decrease of the total flux. Our results suggest the existence of a positive feedback between climate and volcanic aerosol forcing. Such feedback may have minor implications for global warming rate but can prove to be important to understand the long‐term evolution of volcanic atmospheric inputs.
It has been understood since the early days of nuclear weapons testing that nuclear detonations can initiate large-scale fires in urban and rural settings (Glasstone & Dolan, 1977; OTA, 1979;Lewis, 1979). The first estimates of the massive amount of smoke that could be generated in a global-scale nuclear war were made by Crutzen and Birks (1982), and the potential for this amount of smoke injected into the stratosphere to cause global climatic change was shown by the TTAPS study (Turco et al., 1983), where the outcome was likened to a "nuclear winter." Subsequent simulations by scientists in both the United States and the Soviet Union confirmed these results (e.g., Aleksandrov & Stenchikov, 1983;Covey et al., 1984). More recently, these results have been reproduced with modern Earth System models by Robock, Oman, and Stenchikov (2007) and Coupe et al. (2019) showing climatic effects lasting for over a decade. Prolonged heating and self-lofting by the soot lengthens its lifetime compared to the climatic effects of sulphate from a large volcanic eruption like that of Mount Pinatubo in 1991, which lasted for about 2 years (Robock, 2002).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.