The extracellular matrix molecules remaining in bioscaffolds derived from decellularized xenogeneic tissues appear to be important for inducing cell functions conducting tissue regeneration. Here, we studied whether decellularization methods, that is, detergent Triton X-100 (TX) alone and TX combined with reversible alkaline swelling (STX), applied to bovine pericardial tissue, could affect the bioscaffold components. The in vitro macrophage response, subdermal biodegradation, and cell infiltration were also studied. The results indicate a lower leaching of fibronectin, but a higher leaching of laminin and sulfated glycosaminoglycans from tissues decellularized with STX and TX, respectively. The in vitro secretion of interleukin-6 and monocyte chemoattractant protein by RAW264.7 macrophages is promoted by decellularized bioscaffold leachates. A lower polymorphonuclear cell density is observed around decellularized bioscaffolds at 1-day implantation; concurrently showing a higher cell infiltration in STX- than in TX-implant. Cells infiltrated into TX-implant show a fibroblastic morphology at 7-day implantation, concurrently the capillary formation is observed at 14-day. Pericardial bioscaffolds suffer biodegradation more pronounced in STX- than in TX-implant. Both TX and STX decellularization methods favor a high leaching of basal lamina components, which presumably promotes a faster macrophage stimulation compared to nondecellularized tissue, and appear to be associated with an increased host cell infiltration in a rat subdermal implantation. Meanwhile, the connective tissue components leaching from TX decellularized bioscaffolds, unlike the STX ones, appear to be associated with an enhanced angiogenesis accompanied by an early-promoted fibroblastic cell transition. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2810-2822, 2016.
Cutaneous wound healing is a complex process that leads the skin reparation with the formation of scar tissue that typically lacks skin appendages. This fact drives us to find new strategies to improve regenerative healing of the skin. This study outlines, the contribution of colloidal silica particles and oligourethane crosslinking on the collagen material properties and the effect on skin wound healing in rats. We characterized the gel properties that are key for in-situ gelation, which is accomplished by the latent reactivity of oligourethane bearing blocked isocyanate groups to crosslink collagen while entrapping silica particles. The swelling/degradation behavior and the elastic modulus of the composite gel were consistent with the modification of collagen type I with oligourethane and silica. On the other hand, these gels were characterized as scaffold for murine macrophages and human stem cells. The application of a composite gel dressing on cutaneous wounds showed a histological appearance of the recovered skin as intact skin; featured by the epidermis, hair follicles, sebaceous glands, subcutaneous adipose layer, and dermis. The results suggest that the collagen-based composite dressings are promising modulators in skin wound healing to achieve a regenerative skin closure with satisfactory functional and aesthetic scars.
Secretion of signaling molecules by macrophages is induced by silica particles deposited onto decellularized tissue derived biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.