/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCFor the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://doi.org/10.1088/0026-1394/51/1A/08008 Metrologia, 51, 1A, 2014-01-01 CCQM-K72 Purity of Zinc with respect to six defined metallic analytes MotivationHigh purity elements can serve as a realisation of the SI unit amount of substance for the specific element. Solutions prepared from high purity metals by applying gravimetric preparation and the concept of molar mass are used as 'calibration' solutions in many fields of analytical chemistry and provide the metrological basis in elemental analysis. Since ideal purity does not exist for real materials, the actual purity of the high purity material must be known with a specified uncertainty. Such purity data, however, are only accessible via measurements, which are limited by their measurement uncertainty. Aiming at uncertainties around 10 -4relative on the purity statement in almost all cases a direct measurement of the element in itself is not applicable, because the available methods are not sufficiently selective and/or accurate. Therefore the indirect approach is followed in order to achieve uncertainties at this level. In the indirect approach the mass fractions of all impurities, in other words all elements excepting the matrix element, are measured and their sum is subtracted from the value for ideal purity, which is 1 kg/kg. Uncertainties at the 10 -4 level are aimed at because high purity metals are not only destined for being used as convenient primary realisations of the SI unit, but also as primary assays or so-called back-spikes in double isotope dilution mass spectrometry (IDMS). With double IDMS combined uncertainties down to 5·10 -4 can be achieved and therefore the uncertainty on the purity statement for these materials should be at or even lower than 10 -4 relative in order not to compromise the IDMS results.As a first step, only six metallic impurities are considered in previous studies and also in this comparison, in order to limit the effort within this study. Other metallic and non-metallic impurities might be subject to future CCQM studies. Zinc was chosen as matrix, due to its ease of...
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à
The key comparison CCQM-K89 was undertaken to demonstrate the capability of participating NMIs and DIs in measuring the contents of incurred trace elements (total arsenic, cadmium and lead) and essential elements (calcium and zinc) at µg/g (for arsenic, cadmium, lead and zinc) and mg/g (for calcium) levels in a herb matrix sample by various analytical techniques.This key comparison was organized by the Government Laboratory of the Hong Kong Special Administrative Region (GLHK) and agreed at the Inorganic Analysis Working Group Meeting in Hindås, Sweden in October 2010 as a benchmarking exercise with arsenic (a trace element) and calcium (an essential element) chosen as the 'exemplary' elements. It was also agreed that a pilot study CCQM-P126 would be run in parallel with this key comparison.The key comparison serves to facilitate claims by participants on the Calibration and Measurement Capabilities (CMCs) as listed in Appendix C of the Key Comparison Database (KCDB) under the Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA).A total of 20 NMIs/DIs registered for this programme and 18 of them submitted their results. Most of the participants used microwave acid digestion methods for sample dissolution. For the instrumental determination, a variety of techniques like ICP-MS, AAS, INAA, ICP-AES were employed by the participants. For this key comparison, inorganic core capabilities have been demonstrated by concerned participants with respect to methods including ICP-MS (without isotope dilution), ID-ICP-MS, ICP-AES, INAA, AAS and ion chromatography with iteratively matrix-matched calibration on the determination of total arsenic, calcium, cadmium, lead and zinc in a matrix of herb.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Main text CCQM-K143 is a key comparison that assesses participants' ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
SIM.QM-S7 was performed to assess the analytical capabilities of National Metrology Institutes (NMIs) and Designated Institutes (DIs) of SIM members (or other regions) for the accurate determination of trace metals in drinking water. The study was proposed by the coordinating laboratories National Research Council Canada (NRC) and Centro Nacional de Metrologia (CENAM) as an activity of Inorganic Analysis Working Group (IAWG) of Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included 16 NMIs/DIs from 15 countries. No measurement method was prescribed by the coordinating laboratories. Therefore, NMIs used measurement methods of their choice. However, the majority of NMIs/DIs used ICP-MS. This SIM.QM-S7 Supplementary Comparison provides NMIs/DIs with the needed evidence for CMC claims for trace elements in fresh waters and similar matrices. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.