This prospective study was carried out to assess the usefulness of five laboratory tests in the diagnosis of hereditary spherocytosis (HS), based on the correlation of erythrocyte membrane protein defects with clinical and laboratory features, and also to determine the membrane protein deficiencies detected in Argentina. Of 116 patients and their family members tested, 62 of them were diagnosed to have HS. The specificity of cryohemolysis (CH) test was 95.2%, and its cut-off value to distinguish HS from normal was 2.8%. For flow cytometry, cut-off points of 17% for mean channel fluorescence (MCF) decrease and 14% coefficient of variation (CV) increase showed 95.9% and 92.2% specificity, respectively. Both tests showed the highest percentages of positive results for diagnosis. Either CH or flow cytometry was positive in 93.5% of patients. In eight patients, flow cytometry was positive only through CV increase. Protein defects were detected in 72.3% of patients; ankyrin and spectrin were the most frequently found deficiencies. The CV of the fluorescence showed significantly higher increases in moderate and severe anemia than in mild anemia (p = 0.003). Severity of anemia showed no other correlation with tests results, type of deficient protein, inheritance pattern, or neonatal jaundice. CH and flow cytometry are easy methods with the highest diagnostic accuracy. Simultaneous reading of mean channel fluorescence (MCF) decrease and CV increase improve diagnostic usefulness of flow cytometry. This test seems to be a reliable predictor of severity. The type of detected protein deficiency has no predictive value for outcome. Predominant ankyrin and spectrin deficiencies agree with reports from other Latin American countries.
It is now recognized that in addition to its activity upon erythroid progenitor cells, erythropoietin (Epo) is capable of stimulating survival of different non-erythroid cells. Since stimulation of erythropoiesis is unwanted for neuroprotection, Epo-like compounds with a more selective action are under investigation. Although the carbamylated derivative of erythropoietin (cEpo) has demonstrated non-hematopoietic tissue protection without erythropoietic effect, little is known about differential mechanisms between Epo and cEpo. Therefore, we investigated signaling pathways which play a key role in Epo-induced proliferation. Here we show that cEpo blocked FOXO3a phosphorylation, allowing expression of downstream target p27(kip1) in UT-7 and TF-1 cells capable of erythroid differentiation. This is consistent with the involvement of cEpo in slowing down G1-to-S-phase progression compared with the effect of Epo upon cell cycle. In contrast, similar antiapoptotic actions of cEpo and Epo were observed in neuronal SH-SY5Y cells. Inhibition and competition assays suggest that Epo may act through both, the homodimeric (EpoR/EpoR) and the heterodimeric (EpoR/βcR) receptors in neuronal SH-SY5Y cells and probably in the TF-1 cell type as well. Results also indicate that cEpo needs both the EpoR and βcR subunits to prevent apoptosis of neuronal cells. Based on evidence suggesting that cell proliferation pathways were involved in the differential effect of Epo and cEpo, we went forward to studying downstream signals. Here we provide the first evidence that unlike Epo, cEpo failed to induce FOXO3a inactivation and subsequent p27(kip1) downregulation, which is clearly shown in the incapacity of cEpo to induce erythroid cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.