The effect of LC mobile phase composition and flow rate (2–50 µL/min) on mobility behavior in vacuum differential mobility spectrometry (vDMS) was investigated for electrosprayed isobaric antidepressant drugs (AD); amitriptyline, maprotiline, venlafaxine; and structurally related antidepressants nortriptyline, imipramine, and desipramine. While at 2 µL/min, no difference in compensation voltage was observed with methanol and acetonitrile, at 50 µL/min, acetonitrile used for LC elution of analytes enabled the selectivity of the mobility separation to be improved. An accurate and sensitive method could be developed for the quantification of six AD drugs in human plasma using trap/elute micro-LC setup hyphenated to vDMS with mass spectrometric detection in the selected ion monitoring mode. The assay was found to be linear over three orders of magnitude, and the limit of quantification was of 25 ng/mL for all analytes. The LC-vDMS-SIM/MS method was compared to a LC-MRM/MS method, and in both cases, inter-assay precisions were lower than 12.5 and accuracies were in the range 91.5–110%, but with a four times reduced analysis time (2 min) for the LC-vDMS-SIM/MS method. This work illustrates that with vDMS, the LC mobile phase composition can be used to tune the ion mobility separation and to improve assay selectivity without additional hardware.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.