During mitosis, the recruitment of spindle-checkpoint-associated proteins to the kinetochore occurs in a defined order. The protein kinase Bub1 localizes to the kinetochore very early during mitosis, followed by Cenp-F, BubR1, Cenp-E and finally Mad2. Using RNA interference, we have investigated whether this order of binding reflects a level of dependency in human somatic cells. Specifically, we show that Bub1 plays a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of Cenp-F, BubR1, Cenp-E and Mad2. In contrast to studies in Xenopus, we also show that BubR1 is not required for kinetochore localization of Bub1. Repression of Bub1 increases the number of cells with lagging chromosomes at metaphase, suggesting that Bub1 plays a role in chromosome congression. However, repression of Bub1 does not appear to compromise spindle checkpoint function either during normal mitosis or in response to spindle damage. This raises the possibility that, in the absence of Bub1, other mechanisms contribute to spindle checkpoint function.
The spindle checkpoint maintains genome stability by inhibiting Cdc20-mediated activation of the anaphase promoting complex/cyclosome (APC/C) until all the chromosomes correctly align on the microtubule spindle apparatus via their kinetochores. BubR1, an essential component of this checkpoint, localises to kinetochores and its kinase activity is regulated by the kinesin-related motor protein Cenp-E. BubR1 also inhibits APC/CCdc20 in vitro, thus providing a molecular link between kinetochore-microtubule interactions and the proteolytic machinery that regulates mitotic progression. Several other protein kinases, including Bub1 and members of the Ipl1/aurora family, also regulate anaphase onset. However, in human somatic cells Bub1 and aurora B kinase activity do not appear to be essential for spindle checkpoint function. Specifically, when Bub1 is inhibited by RNA interference, or aurora kinase activity is inhibited with the small molecule ZM447439, cells arrest transiently in mitosis following exposure to spindle toxins that prevent microtubule polymerisation. Here, we show that mitotic arrest of Bub1-deficient cells is dependent on aurora kinase activity, and vice versa. We suggest therefore that the checkpoint is composed of two arms, one dependent on Bub1, the other on aurora B. Analysis of BubR1 complexes suggests that both of these arms converge on the mitotic checkpoint complex (MCC), which includes BubR1, Bub3, Mad2 and Cdc20. Although it is known that MCC components can bind and inhibit the APC/C, we show here for the first time that the binding of the MCC to the APC/C is dependent on an active checkpoint signal. Furthermore, we show that both Bub1 and aurora kinase activity are required to promote binding of the MCC to the APC/C. These observations provide a simple explanation of why BubR1 and Mad2 are essential for checkpoint function following spindle destruction, yet Bub1 and aurora B kinase activity are not. Taken together with other observations, we suggest that these two arms respond to different spindle cues: whereas the Bub1 arm monitors kinetochore-microtubule attachment, the aurora B arm monitors biorientation. This bifurcation in the signalling mechanism may help explain why many tumour cells mount a robust checkpoint response following spindle damage, despite exhibiting chromosome instability.
SummaryThe spindle assembly checkpoint (SAC) is a signalling network that delays anaphase onset until all the chromosomes are attached to the mitotic spindle through their kinetochores. The downstream target of the spindle checkpoint is the anaphase-promoting complex/ cyclosome (APC/C), an E3 ubiquitin ligase that targets several anaphase inhibitors for proteolysis, including securin and cyclin B1. In the presence of unattached kinetochores, the APC/C is inhibited by the mitotic checkpoint complex (MCC), a tetrameric complex composed of three SAC components, namely BubR1, Bub3 and Mad2, and the APC/C co-activator Cdc20. The molecular mechanisms underlying exactly how unattached kinetochores catalyse MCC formation and how the MCC then inhibits the APC/C remain obscure. Here, using RNAi complementation and in vitro ubiquitylation assays, we investigate the domains in BubR1 required for APC/C inhibition. We observe that kinetochore localisation of BubR1 is required for efficient MCC assembly and SAC response. Furthermore, in contrast to previous studies, we show that the N-terminal domain of BubR1 is the only domain involved in binding to Cdc20-Mad2 and the APC/C. Within this region, an N-terminal KEN box (KEN1) is essential for these interactions. By contrast, mutation of the second KEN box (KEN2) of BubR1 does not interfere with MCC assembly or APC/C binding. However, both in cells and in vitro, the KEN2 box is required for inhibition of APC/C when activated by Cdc20 (APC/C Cdc20 ). Indeed, we show that this second KEN box promotes SAC function by blocking the recruitment of substrates to the APC/C. Thus, we propose a model in which the BubR1 KEN boxes play two very different roles, the first to promote MCC assembly and the second to block substrate recruitment to APC/C Cdc20 .
The centromere defines where on a chromosome the kinetochores assemble. Kinetochores, large protein structures, mediate chromosome segregation during mitosis and meiosis by performing three key functions. Firstly, kinetochores attach chromosomes to the microtubule spindle apparatus. Secondly, kinetochores co-ordinate microtubule dynamics to allow chromosomes to move along the spindle. Lastly, kinetochores generate the 'wait' signal which prevents anaphase onset until all the chromosomes are correctly aligned on the spindle. This signal forms part of the spindle checkpoint mechanism, a highly conserved cell cycle checkpoint which maintains the accuracy of the chromosome segregation process. This article provides a brief historical overview before focusing on some of the outstanding issues and more recent developments in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.