International audienceThis article presented a survey of dependability issues faced by multi-core architectures at nanoscale technology nodes. Existing solutions against these challenges were also discussed, describing their scope of application, from technology level methodologies, to design approaches to the metrics required to evaluate the overall dependability of a system. In the future, the constant reduction of the feature size of the devices will exacerbate the issues related to aging and soft errors. This will create further challenges and at design level, an integrated design approach that will cope with the occurrence of faults at any time of their occurrence i.e., at manufacturing (thus increasing yield) and in the field (thus increasing reliability) will become more and more important to obtain economically viable and dependable systems. Dependability assessment will also need an integrated approach for cross-layer, pre- and post-silicon techniques for “just right”dependability assessment in order to avoid “overdesign”for dependability using classic guard-banding methodologies
Firmware refers to device read-only resident code which includes microcode and macro-instruction-level routines. For Internet-of-Things (IoT) devices without an operating system, firmware includes all the necessary instructions on how such embedded systems operate and communicate. Thus, firmware updates are an essential part of device functionality. They provide the ability to patch vulnerabilities, address operational issues, and improve device reliability and performance during the lifetime of the system. This process, however, is often exploited by attackers in order to inject malicious firmware code into the embedded device. In this paper, we present a framework for secure firmware updates on embedded systems. The approach is based on hardware primitives and cryptographic modules, and it can be deployed in environments where communication channels might be insecure. The implementation of the framework is flexible as it can be adapted in regards to the IoT device's available hardware resources and constraints. Our security analysis shows that our framework is resilient to a variety of attack vectors. The experimental setup demonstrates the feasibility of the approach. By implementing a variety of test cases on FPGA, we demonstrate the adaptability and performance of the framework. Experiments indicate that the update procedure for a 1183kB firmware image could be achieved, in a secure manner, under 1.73 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.