This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed.
Adult crayfish exhibit a variety of overt circadian rhythms. However, the physiological mechanisms underlying the overt rhythms are controversial. Research has centered on two overt rhythms: the motor activity and the retinal sensitivity rhythms of the genus Procambarus. The present work reviews various studies undertaken to localize pacemakers and mechanisms of entrainment responsible for these two rhythms in adult organisms of this crustacean decapod. It also describes an ontogenetic approach to the problem by means of behavioral, electrophysiological, and neurochemical experiments. The results of this approach confirm previous models proposed for adult crayfish, based on a number of circadian pacemakers distributed in the central nervous system. However, the coupling of rhythmicity between these independent oscillators might be complex and dependent on the interaction between serotonin (5-HT), light, and the crustacean hyperglycemic hormone (CHH). The latter compound has, up until now, not been considered as an agent in the genesis and synchronization of the retinal sensitivity rhythm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.