This study investigated 960 Slovak and Czech spotted cattle from four different conventional (non-organic) dairy herds located in Eastern Slovakia and Czechia during early lactation (14–100 days after calving). Dairy cows were examined clinically; milk from fore-stripping of each udder quarter was subjected to sensory examination and assessed by the California mastitis test (CMT), and laboratory analyses of bacterial pathogens in milk, including virulence factors, were conducted. Positive CMT scores (1–3) for one or more quarters were detected in 271 (28.2%) of the examined animals. Out of 230 infected milk samples, representing 24.0% of all dairy cows, staphylococci (59.1% of positive findings) were the most commonly isolated organisms, followed by E. coli (11.3%), streptococci Str. uberis (9.1%) and Str. agalactiae (3.4%), and enterococci (6.1%). From 136 isolates of S. aureus (38 isolates) and non-aureus staphylococci (NAS; 98 isolates), virulence factors and their resistance to 14 antimicrobials were detected using the disk diffusion method, with PCR detection of the methicillin resistance gene, mecA. An increased incidence of clinical and chronic forms of mastitis has been reported in mastitic cows in which staphylococci, especially S. aureus and NAS (S. chromogenes, S. warneri, and S. xylosus), have been detected and compared to other isolated udder pathogens. From those species, S. aureus and isolates of NAS mentioned above showed multiple virulence factors that are more likely to hydrolyze DNA, hemolysis, produce gelatinase and biofilm, and have multi-drug resistance as compared to other less virulent staphylococci. Generally, the isolated staphylococci showed 77.2% resistance to one or more antimicrobials, in particular to aminoglycosides, β-lactams, macrolides, or cephalosporins. Isolates that showed the ability to form a biofilm were more resistant to more than one antimicrobial than isolates without biofilm production. Multi-drug resistance to three or more antimicrobial classes was recorded in 16 isolates (11.7%), and the presence of the mecA gene was also confirmed in two isolates of S. aureus and two species of NAS.
This study aimed to calculate the proportion of antibiotic resistance profiles of Enterococcus faecium, E. faecalis, and E. durans isolated from traditional sheep and goat cheeses obtained from a selected border area of Slovakia with Hungary (region Slanské vrchy). A total of 110 Enterococcus sp. were isolated from cheese samples, of which 52 strains (E. faecium (12), E. faecalis (28), E. durans (12)) were represented. After isolation and identification by polymerase chain reaction and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, the enterococci (E. faecium, E. faecalis, and E. durans) were submitted to susceptibility tests against nine antimicrobial agents. In general, strains of E. faecalis were more resistant than E. durans and E. faecium. A high percentage of resistance was noted in E. faecalis to rifampicin (100%), vancomycin (85.7%), teicoplanin (71.4%), erythromycin (71.4%), minocycline (57.1%), nitrofurantoin (57.1%), ciprofloxacin (14.3%), and levofloxacin (14.3%). E. durans showed resistance to rifampicin (100%), teicoplanin (100%), vancomycin (66.7%), erythromycin (66.7%), nitrofurantoin (66.7%), and minocycline (33.3%), and E. faecium showed resistance to vancomycin, teicoplanin, and erythromycin (100%). Multidrug-resistant strains were confirmed in 80% of the 52 strains in this study. Continuous identification of Enterococcus sp. and monitoring of their incidence and emerging antibiotic resistance is important in order to prevent a potential risk to public health caused by the contamination of milk and other dairy products, such as cheeses, made on farm level.
Objectives: Acrylamide is a toxic compound that can be found it both occupational and non-occupational environments. This study focuses on its sources and health effects of its exposure. Methods: Adverse effects of acrylamide, especially carcinogenic, genotoxic, and teratogenic were reported in many studies conducted on animals. Neurotoxicity was reported in workers exposed to acrylamide in the occupational environment. Another important source of populations' exposure to acrylamide is their nutrition. Results: This study focuses on humans' exposure to acrylamide from various sources and its harmful effects on their health. Conclusions: Dietary intake of acrylamide, as well as occupational exposure, cigarette smoking, cosmetics usage and other environmental sources could have a significant effect on human health.
SummaryThe effect of probiotic strains (Enterococcus faecium EF55, E. faecium CCM7420, E. faecium CCM8558, E. durans ED26E/7, Lactobacillus fermentum CCM7421, L. plantarum 17L/1) on the production of superoxide anion (O2-) in peritoneal macrophages of Trichinella spiralis infected mice was examined. E. faecium EF55 and E. faecium CCM8558 strains increased the O2-production prior to parasitic infection,at the day7of application.A significant inhibition of the O2- production caused by T. spiralis infection on day 5 post infection (p.i.) was prevented by all examined strains. Lactobacilli stimulated metabolic activity of macrophages during intestinal and early muscular phase (from day 5 to 25 p.i.) of trichinellosis. Enterococci increased the O2- production in early intestinal phase (day 5 p.i.) and during the muscular phase of trichinellosis (days 25 and 32 p.i.). Respected increase in macrophage’s metabolic activity induced by probiotic treatment in the intestinal phase of trichinellosis augmented the host antiparasite defence (damage and killing of newborn larvae with reactive oxygen species from macrophages).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.