Leishmania spp. are intracellular parasites that cause lesions in the skin, mucosa, and viscera. We have previously shown that Leishmania infection reduces mononuclear phagocyte adhesion to inflamed connective tissue. In this study, we examined the role of adhesion molecules and chemokines in this process. Infection rate (r ؍ ؊0.826, P ؍ 0.003) and parasite burden (r ؍ ؊0.917, P ؍ 0.028) negatively correlated to mouse phagocyte adhesion. The decrease (58.7 to 75.0% inhibition, P ؍ 0.005) in phagocyte adhesion to connective tissue, induced by Leishmania, occurred as early as 2 h after infection and was maintained for at least 24 h. Interestingly, impairment of cell adhesion was sustained by phagocyte infection, since it was not observed following phagocytosis of killed parasites (cell adhesion varied from 15.2% below to 24.0% above control levels, P > 0.05). In addition, Leishmania infection diminished cell adhesion to fibronectin (54.1 to 96.2%, P < 0.01), collagen (15.7 to 83.7%, P < 0.05), and laminin (59.1 to 82.2%, P < 0.05). The CD11b hi subpopulation was highly infected (49.6 to 97.3%). Calcium and Mg 2؉ replacement by Mn 2؉ , a treatment that is known to induce integrins to a high state of affinity for their receptors, reverted the inhibition in adhesion caused by Leishmania. This reversion was completely blocked by anti-VLA4 antibodies. Furthermore, expression of CCR4 and CCR5, two chemokine receptors implicated in cell adhesion, was found to be downregulated 16 h after infection (2.8 to 4.1 times and 1.9 to 2.8 times, respectively). Together, these results suggest that mechanisms regulating integrin function are implicated in the change of macrophage adhesion in leishmaniasis.
Epigenetic modifications in the C-terminal domain of histones coordinate important events during early development including embryo genome activation (EGA) and cell differentiation. In this study, the mRNA expression profile of the main lysine demethylases (KDMs) acting on the lysine 4 (H3K4), 9 (H3K9), and 27 (H3K27) of the histone H3 was determined at pre-, during and post-EGA stages of bovine and porcine embryos produced by in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). In IVF embryos, mRNA abundance of most KDMs revealed a bell-shaped profile with peak expression around the EGA period, i.e. Day 3 for porcine (KDM2B, KDM5B, KDM5C, KDM4B, KDM4C, KDM6A, KDM6B, and KDM7A), and Day 4 for bovine (KDM1A, KDM5A, KDM5B, KDM5C, KDM3A, KDM4A, KDM4C, and KDM7A). The mRNA profile of KDM1A, KDM2B, KDM3A, KDM3B, KDM6A, and KDM6B differed between porcine and bovine IVF embryos. Several differences were also observed between SCNT and IVF, which includes a precocious peak in the mRNA expression of KDM1A, KDM3A, KDM4C, KDM5A, KDM5B, KDM5C, KDM6A, and KDM7A in bovine SCNT embryos; absence of mRNA peak for KDM4B, KDM4C, and KDM6A in porcine SCNT embryos; and early decreasing in KDM5B and KDM5C mRNA in porcine SCNT embryos. Based on the mRNA profile, this study has identified several KDMs that are likely involved in the regulation of the EGA transition, KDMs that may have a species-specific role in bovine and porcine embryos, and KDMs that are improperly expressed during cell reprogramming in SCNT embryos.
BackgroundStructural chromosome abnormalities are well known as factors that reduce fertility rate in domestic pigs. According to large-scale national cytogenetic screening programs that are implemented in France, it is estimated that new chromosome abnormalities occur at a rate of 0.5 % in fertility-unproven boars.ResultsThis work aimed at estimating the prevalence and consequences of chromosome abnormalities in commercial swine operations in Canada. We found pig carriers at a frequency of 1.64 % (12 out of 732 boars). Carrier pigs consistently showed lower fertility values. The total number of piglets born for litters from carrier boars was between 4 and 46 % lower than the herd average. Similarly, carrier boars produced litters with a total number of piglets born alive that was between 6 and 28 % lower than the herd average. A total of 12 new structural chromosome abnormalities were identified.ConclusionsReproductive performance is significantly reduced in sires with chromosome abnormalities. The incidence of such abnormal sires appears relatively high in populations without routine cytogenetic screening such as observed for Canada in this study. Systematic cytogenetic screening of potential breeding boars would minimise the risk of carriers of chromosome aberrations entering artificial insemination centres. This would avoid the large negative effects on productivity for the commercial sow herds and reduce the risk of transmitting abnormalities to future generations in nucleus farms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12711-016-0246-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.