Epigenetic modifications in the C-terminal domain of histones coordinate important events during early development including embryo genome activation (EGA) and cell differentiation. In this study, the mRNA expression profile of the main lysine demethylases (KDMs) acting on the lysine 4 (H3K4), 9 (H3K9), and 27 (H3K27) of the histone H3 was determined at pre-, during and post-EGA stages of bovine and porcine embryos produced by in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). In IVF embryos, mRNA abundance of most KDMs revealed a bell-shaped profile with peak expression around the EGA period, i.e. Day 3 for porcine (KDM2B, KDM5B, KDM5C, KDM4B, KDM4C, KDM6A, KDM6B, and KDM7A), and Day 4 for bovine (KDM1A, KDM5A, KDM5B, KDM5C, KDM3A, KDM4A, KDM4C, and KDM7A). The mRNA profile of KDM1A, KDM2B, KDM3A, KDM3B, KDM6A, and KDM6B differed between porcine and bovine IVF embryos. Several differences were also observed between SCNT and IVF, which includes a precocious peak in the mRNA expression of KDM1A, KDM3A, KDM4C, KDM5A, KDM5B, KDM5C, KDM6A, and KDM7A in bovine SCNT embryos; absence of mRNA peak for KDM4B, KDM4C, and KDM6A in porcine SCNT embryos; and early decreasing in KDM5B and KDM5C mRNA in porcine SCNT embryos. Based on the mRNA profile, this study has identified several KDMs that are likely involved in the regulation of the EGA transition, KDMs that may have a species-specific role in bovine and porcine embryos, and KDMs that are improperly expressed during cell reprogramming in SCNT embryos.
The lysine demethylases KDM5B and KDM5C are highly, but transiently, expressed in porcine embryos around the genome activation stage. Attenuation of KDM5B and KDM5C mRNA hampered embryo development to the blastocyst stage in fertilized, parthenogenetically activated and nuclear transfer embryos. While KDM5B attenuation increased H3K4me2-3 levels on D3 embryos and H3K4me1-2-3 on D5 embryos, KDM5C attenuation increased H3K9me1 on D3 embryos, and H3K9me1 and H3K4me1 on D5 embryos. The relative mRNA abundance of EIF1AX and EIF2A on D3 embryos, and the proportion of D4 embryos presenting a fluorescent signal for uridine incorporation were severely reduced in both KDM5B-and KDM5Cattenuated compared to control embryos, which indicate a delay in the initiation of the embryo transcriptional activity. Moreover, KDM5B and KDM5C attenuation affected DNA damage response and increased DNA double-strand breaks (DSBs), and decreased development of UV-irradiated embryos. Findings from this study revealed that both KDM5B and KDM5C are important regulators of early development in porcine embryos as their attenuation altered H3K4 and H3K9 methylation patterns, perturbed embryo genome activation, and decreased DNA damage repair capacity.
There is growing evidence that histone lysine demethylases (KDMs) play critical roles in the regulation of embryo development. This study investigated if KDM7A, a lysine demethylase known to act on mono-(me1) and di-(me2) methylation of H3K9 and H3K27, participates in the regulation of early embryo development. Knockdown of KDM7A mRNA reduced blastocyst formation by 69.2% in in vitro fertilized (IVF), 48.4% in parthenogenetically activated (PA), and 48.1% in somatic cell nuclear transfer (SCNT) embryos compared to controls. Global immunofluorescence (IF) signal in KDM7A knockdown compared to control embryos was increased for H3K27me1 on D7, for H3K27me2 on D3 and D5, for H3K9me1 on D5 and D7, and for H3K9me2 on D5 embryos, but decreased for H3K9me1, me2 and me3 on D3. Moreover, KDM7A knockdown altered mRNA expression, including the downregulation of KDM3C on D3, NANOG on D5 and D7, and OCT4 on D7 embryos, and the upregulation of CDX2, KDM4B and KDM6B on D5 embryos. On D3 and D5 embryos, total cell number and mRNA expression of embryo genome activation (EGA) markers (EIF1AX and PPP1R15B) were not affected by KDM7A knockdown. However, the ratio of inner cell mass (ICM)/total number of cells in D7 blastocysts was reduced by 45.5% in KDM7A knockdown compared to control embryos. These findings support a critical role for KDM7A in the regulation of early development and cell lineage specification in porcine embryos, which is likely mediated through the modulation of H3K9me1/me2 and H3K27me1/me2 levels, and changes in the expression of other KDMs and pluripotency genes.
Interferon tau (IFNT) is the pregnancy recognition signal in ruminants and is secreted by trophoblast cells. Paracrine action in the endometrium is well established by inhibiting luteolytic pulses of prostaglandin F2 alpha. Recently, endocrine action was documented in the corpus luteum, blood cell and liver. It was hypothesized that conditioned medium (CM) obtained from days 7, 9 and 12 parthenogenetic embryos alters luteal cell gene expression. The aim was to establish a bovine mixed luteal cell culture to evaluate cellular response associated to interferon stimulated genes, steroidogenesis and apoptosis. Conditioned medium was obtained from Days 7, 9 and 12 parthenogenetic (PA) embryos culture. Moreover, antiviral assay was performed on CM from Days 7, 9 and 12 to verify Type I interferon activity. Luteal cell culture was validated by steroidogenic and apoptotic genes (CYP11A1, HSD3B1, BAX, BCL2, AKT and XIAP mRNA expression), and concentration of progesterone as endpoint. Luteal cell culture was treated with interferon alpha (IFNA) and CM from parthenogenetic embryos. Antiviral assay revealed Type I interferon activity on CM from embryos increasing on Days 9 and 12. ISG15 mRNA was greater in the mixed luteal cells culture treated with 1, 10 and 100ng/ml of interferon alpha (IFNA) and also on Days 7, 9 and 12 CM treatments. Concentration of progesterone was not altered in luteal cell culture regardless of treatments. Steroidogenic and apoptotic genes were similar among groups in luteal cell culture treated with different doses of IFNA or CM from PA embryos. In conclusion, parthenogenetic embryo-derived CM has antiviral activity, luteal cell culture respond to Type I interferon by expressing IGS15. These data indicate this model can be used for IFNT endocrine signaling studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.