Three tropane alkaloids, 1-3, were isolated from Erythroxylum caatingae, i.e., 6β-benzoyloxy-3α-[(4-hydroxy-3,5-dimethoxybenzoyl)oxy]tropane (1), a new tropane alkaloid, along with the known alkaloids 3α,6β-dibenzoyloxytropane (2) and 6β-benzoyloxy-3α-[(3,4,5-trimethoxybenzoyl)oxy]tropane (catuabine B; 3). Their structures were determined by 2D- ((1) H and (13) C) NMR. By LC/ESI-MS/MS analysis of the fractions of alkaloids 1-3, it was possible to detect five more alkaloids, 4-8, two of these, 4 and 8, possibly being new natural products. X-Ray crystallography of the chloride derivate of 1, i.e., 6β-benzoyloxy-3α-(4-hydroxy-3,5-dimethoxybenzoyloxy)tropane hydrochloride (1a) confirmed the structure of 1. Cytotoxicity was tested against the cell lines HEp-2, NCI-H292, and KB for the MeOH extract and alkaloid 3, and antitumor activity was tested against Sarcoma 180 only for the MeOH extract.
Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffi ana, entatisane- 7α,16α-diol (xylodiol) and ent-7α-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 μM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 μM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent
Phytochemical investigation of Anaxagorea dolichocarpa Sprague & Sandwith led to isolation of three azaphenanthrene alkaloids: eupolauramine, sampangine and imbiline 1. Their chemical structures were established on the basis of spectroscopic data from IR, HR-ESI-MS, NMR (including 2D experiments) and comparison with the literature. Sampangine and imbiline 1 are being described in the Anaxagorea genus for the first time. Eupolauramine and sampangine show concentration-dependent antitumoral activity in leukemic cells K562 with IC50 of 18.97 and 10.95 µg/mL, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.