Porcine pancreatic lipase and Fusarium solani cutinase were used t o catalyze transesterification reactions between methyl propionate, ethyl propionate, and a series of primary alcohols at high temperatures in a continuous packed-bed gas-solid reactor, in which the solid phase is composed of the enzyme and the substrates and products are in a gaseous form. In this type of system, enzyme activity was found to depend essentially on the water activity (A,) of the enzyme preparation.
Fusarium solani cutinase and Candida cylindracea lipase were used to catalyze a transesterification reaction in a continuous gas/solid bioreactor. In this system, a solid phase composed of a packed enzymatic preparation was continuously percolated with carrier gas which fed substrate and removed reaction products simultaneously. Different conditions of immobilization were used and compared to the results obtained with a nonsupported enzyme. The enzymatic activity was found to be highly dependent of a key parameter: water activity (a(w)). Biocatalyst stability was greatly influenced by water activity and the choice of immobilization technique for the enzymatic material. For free and adsorbed enzymes, water requirements exhibited optima which corresponded to the complete hydration coverage of the protein. These optima presented a good correlation with the isotherm sorption curves obtained for the different preparations. In this work are reported the results concerning the possibility of using a continuous system able to operate at controlled water activity in a heterogeneous medium. Lipolytic enzyme in such a system appears to be a new process for the biotransformation of volatile esters.
Although microwave-assisted reactions are widely applied in various domains of organic chemistry, their use in the area of enzyme chemistry has been rather limited, due to the high temperatures associated with the microwave heating: Because current technology, allows a good control of reaction parameters, several examples of microwave-assisted enzyme chemistry have been reported, using stable and effective biocatalysts (modified enzymes). The purpose of this review is to highlight the applications and studies on the influence of microwave irradiation on enzymatic properties and their application in enzyme chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.