Relative age effects (RAE) generate consistent participation inequalities and selection biases in sports. The study aimed to investigate RAE across all sports of the national Swiss talent development programme (STDP). In this study, 18 859 youth athletes (female N = 5353; mean age: 14.8 ± 2.5 y and male N = 13 506; mean age: 14.4 ± 2.4 y) in 70 sports who participated in the 2014 competitive season were evaluated. The sample was subdivided by sex and the national level selection (NLS, N = 2464). Odds ratios (ORs) of relative age quarters (Q1-Q4) and 95% confidence intervals (CI) were calculated. In STDP, small RAE were evident for females (OR 1.35 (95%-CI 1.24, 1.47)) and males (OR 1.84 (95%-CI 1.74, 1.95)). RAE were similar in female NLS athletes (OR 1.30 (95%-CI 1.08, 1.57)) and larger in male NLS athletes (OR 2.40 (95%-CI 1.42, 1.97)) compared to athletes in the lower selection level. In STDP, RAE are evident for both sexes in several sports with popular sports showing higher RAE. RAE were larger in males than females. A higher selection level showed higher RAE only for males. In Switzerland, talent identification and development should be considered as a long-term process.
(TMS) metrics were measured in the intervention and nonintervention extensor carpi radialis. Results There was 27 % motor learning and 9 % (both p < 0.001) interlimb transfer in all groups but SES added to MP did not augment learning and transfer. Corticospinal excitability increased after MP and SES when measured at rest but it increased after MP and decreased after SES when measured during contraction. No changes occurred in intracortical inhibition and facilitation. MP did not affect the TMS metrics in the transfer hand. In contrast, corticospinal excitability strongly increased after SES with MP + SES showing sharply opposite of these effects. Conclusion Motor practice and SES each can produce motor learning and interlimb transfer and are likely to be mediated by different mechanisms. The results provide insight into the physiological mechanisms underlying the effects of MP and SES on motor learning and cortical plasticity and show that these mechanisms are likely to be different for the trained and stimulated motor cortex and the non-trained and non-stimulated motor cortex. Keywords
Competitive alpine skiers are subject to substantial risks of injury, especially concerning the anterior cruciate ligament (ACL). During “landing back weighted” episodes, hamstrings may partially counteract the anterior shear force acting on the tibia by eccentrically resisting the boot-induced drawer of the tibia relative to the femur. The aim of the present study was to provide novel descriptive data and sport-specific reference values on maximal eccentric hamstrings strength (MEHS) in competitive alpine skiers from youth to elite level, and to explore potential relationships with sex, age and biological maturation. 170 competitive alpine skiers were investigated: 139 youth athletes (51 females, 88 males; age: 13.8 ± 0.59 years) and 31 elite athletes (19 females, 12 males; age: 21.7 ± 2.8 years). MEHS was assessed by the (Vald Performance, Newstead, Australia). U15 female skiers presented lower MEHS compared to female elite skiers for both limbs ( R = 210 ± 44 N vs. 340 ± 48 N, respectively, p < 0.001, and L = 207 ± 46 N vs. 303 ± 35 N, respectively, p < 0.001). Similarly, lower MEHS was observed in U15 male skiers compared to male elite skiers for both limbs ( R = 259 ± 51 N vs. 486 ± 62 N, respectively, p < 0.001, and L = 258 ± 57 N vs. 427 ± 54 N, respectively, p < 0.001). Correlations between MEHS and chronological age were modestly significant only for the U15 group ( r = 0.37 and p < 0.001). When the correlations for the U15 group were performed between MHES and maturity offset (obtained from the calculation of biological age, i.e., age at peak height velocity), statistical significance was reached by all the correlations run for 3 variables (Males < 0: r = 0.59, p < 0.0001; Males > 0: r = 0.70, p < 0.0001; and Females > 0: r = 0.46, p < 0.0001, start of maturity offset = 0). This cross-sectional description of MEHS in alpine skiers from youth to elite level highlights the importance of biological maturation for MEHS values in youth athletes and presents novel data that may offer insights into new approaches for injury prevention.
Background: In football, annual age-group categorization leads to relative age effects (RAEs) in talent development. Given such trends, relative age may also associate with market values. This study analyzed the relationship between RAEs and market values of youth players. Methods: Age category, birthdate, and market values of 11,738 youth male football players were obtained from the “transfermarkt.de” database, which delivers a good proxy for real market values. RAEs were calculated using odds ratios (OR) with 95% confidence intervals (95%CI). Results: Significant RAEs were found across all age-groups (p < 0.05). The largest RAEs occurred in U18 players (Q1 [relatively older] v Q4 [relatively younger] OR = 3.1) ORs decreased with age category, i.e., U19 (2.7), U20 (2.6), U21 (2.4), U22 (2.2), and U23 (1.8). At U19s, Q1 players were associated with significantly higher market values than Q4 players. However, by U21, U22, and U23 RAEs were inversed, with correspondingly higher market values for Q4 players apparent. While large typical RAEs for all playing positions was observed in younger age categories (U18–U20), inversed RAEs were only evident for defenders (small-medium) and for strikers (medium-large) in U21–U23 (not goalkeepers and midfielders). Conclusions: Assuming an equal distribution of football talent exists across annual cohorts, results indicate the selection and market value of young professional players is dynamic. Findings suggest a potential biased selection, and undervaluing of Q4 players in younger age groups, as their representation and market value increased over time. By contrast, the changing representations and market values of Q1 players suggest initial overvaluing in performance and monetary terms. Therefore, this inefficient talent selection and the accompanying waste of money should be improved.
Severe knee injuries are common in alpine skiing and the hamstring muscles are known to counteract the anterior tibial displacement that typically accompanies major injury mechanisms. This study aimed to assess the Maximal Eccentric Hamstring Strength (MEHS) of youth competitive alpine skiers during Nordic Hamstring Exercise (NHE) in terms of dependence of sex, age and biological maturation. A total of 246 7- to 15-year-old skiers were tested with respect to their MEHS using an NHE-based measurement device (Vald Performance, Newstead, Australia). Significantly greater absolute MEHS was observed in skiers of the under 15 years (U15) category compared to skiers under 10 years old (U10) (227.9 ± 61.1 N vs. 142.6 ± 28.9 N; p < 0.001), also when grouped by sex. Absolute MEHS was revealed to be lower in U15 females compared to males (213.5 ± 49.0 N vs. 241.9 ± 68.4 N; p = 0.001); in U10 skiers there was no sex difference. For all age groups and sexes, absolute MEHS values were significantly correlated with age and biological maturation (p < 0.001). However, when normalized to body weight such associations disappeared, which is why this is strongly recommended when testing around their growth spurt. Overall, this study established sport-specific normative reference data that may be of interest to researchers and sport practitioners alike.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.