Abstract. The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (advanced microwave sounding unit) channels. Interest in this topic was evident by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others.The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However, significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle or more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences.
Abstract:River systems are increasingly under stress and pressure from agriculture and urbanization in riparian zones, resulting in frequent engineering interventions such as bank stabilization or flood protection. This study provides guidelines for a more sustainable approach to river management based on hydrogeomorphology (HGM) concepts applied to three contrasted rivers in Quebec (Canada). Mobility and flooding spaces are determined for the three rivers and three levels of "freedom space" are subsequently defined based on the combination of the two spaces. The first level of freedom space includes very frequently flooded and highly mobile zones over the next 50 years, as well as riparian wetlands. It provides the minimum space for both fluvial and ecological functionality of the river system and corresponds to a highly variable width, approximately 1.7 times the channel width on average, for the three studied sites. The second level includes space for floods of larger magnitude and provides for meanders to migrate freely over a longer time period. The last level of freedom space represents exceptional flood zones. We propose the freedom space concept to be implemented in current river management legislation because it promotes a sustainable way to manage river systems and it increases their resilience to climate and land use changes in comparison with traditional river management approaches which are based on frequent and spatially restricted interventions. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems CorporationPlease find attached our revised manuscript. As you will see, we have made substantial change to the original manuscript based on the very thorough and stimulating comments received from the three reviewers. The detailed changes are described in the attached 27-page long letter. The most important change is that we have decided not to include the cost-benefit analysis in order to focus on better explaining the concepts and methodological issues of the freedom space approach. This is why the title of the paper has been revised to "Freedom space for rivers: a sustainable management approach to enhance river resilience".We would like to take this opportunity to thank the reviewers for their thoroughness in assessing the initial version of this paper. Their comments and suggestions prompted us to clarify our approach so that it can hopefully be applied in other regions of the world to improve resilience of river systems. We hope you will find this revised version suitable for publication in your journal. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Abstract 8 River systems are increasingly under stress and pressure from agriculture and urbanization 9 in riparian zones, resulting in frequent engineering interventions such as bank stabilization or 10 flood protection. This s...
Hydraulic fracturing is becoming an important technique worldwide to recover hydrocarbons from unconventional sources such as shale gas. In Quebec (Canada), the Utica Shale has been identified as having unconventional gas production potential. However, there has been a moratorium on shale gas exploration since 2010. The work reported here was aimed at defining baseline concentrations of methane in shallow aquifers of the St. Lawrence Lowlands and its sources using δ(13)C methane signatures. Since this study was performed prior to large-scale fracturing activities, it provides background data prior to the eventual exploitation of shale gas through hydraulic fracturing. Groundwater was sampled from private (n = 81), municipal (n = 34), and observation (n = 15) wells between August 2012 and May 2013. Methane was detected in 80% of the wells with an average concentration of 3.8 ± 8.8 mg/L, and a range of <0.0006 to 45.9 mg/L. Methane concentrations were linked to groundwater chemistry and distance to the major faults in the studied area. The methane δ(1)(3)C signature of 19 samples was > -50‰, indicating a potential thermogenic source. Localized areas of high methane concentrations from predominantly biogenic sources were found throughout the study area. In several samples, mixing, migration, and oxidation processes likely affected the chemical and isotopic composition of the gases, making it difficult to pinpoint their origin. Energy companies should respect a safe distance from major natural faults in the bedrock when planning the localization of hydraulic fracturation activities to minimize the risk of contaminating the surrounding groundwater since natural faults are likely to be a preferential migration pathway for methane.
Introduction Background and RationalePeatlands are organic-rich wetlands that provide important ecosystem services at a range of spatial scales (Kimmel & Mander, 2010). Local hydrological setting is of central importance in determining the characteristics and functions of these ecosystems (Siegel & Glaser, 2006). Peatlands are characterized by waterlogged, anoxic conditions that suppress microbial decomposition, causing carbon to accumulate slowly but persistently over thousands of years in the form of partially decomposed plant detritus (Yu et al., 2010). Peatlands cover less than 3% of the Earth's land surface (Xu et al., 2018b) yet they are thought to store between approximately 500 and 600 Gt (5-6 × 10 17 g) of carbon (Müller & Joos, 2020;Page et al., 2011;Yu, 2011Yu, , 2012, equivalent to between approximately one sixth and one third of global soil carbon (Scharlemann et al., 2014). As well as being long-term carbon sinks, peatlands also emit greenhouse gases, particularly carbon dioxide (CO 2 ) and methane. Peatland greenhouse gas budgets are highly sensitive to surface wetness, and even modest changes in water-table depths can cause peatlands to switch between being net sinks and sources of greenhouse gases when measured in CO 2 -equivalent units (Evans et al., 2021;Günther et al., 2020). In some locations, water that drains from peat
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration-time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.