In order to elucidate the mechanisms involved in human dentin formation, we developed a cell culture system to promote differentiation of dental pulp cells into odontoblasts. Explants from human teeth were cultured in Eagle's basal medium supplemented with 10% or 15% fetal calf serum, with or without beta-glycerophosphate (beta GP). Addition of beta GP to the culture medium induced odontoblast features in the cultured pulp cells. Cells polarized and some of them exhibited a typical cellular extension. In some cases, cells aligned with their processes oriented in the same direction and developed junctional complexes similar to the terminal web linking odontoblasts in vivo. Fine structural analyses showed the presence of typical intracellular organelles of the odontoblast body, whereas the process contained only cytoskeleton elements and secretory vesicles. Polarized cells deposited onto the plastic dishes an abundant and organized type I collagen-rich matrix with areas of mineralization appearing thereafter. X-ray microanalysis showed the presence of calcium and phosphorus and the electron diffraction pattern confirmed the apatitic crystal structure of the mineral. High expression of alpha 1 (1) collagen mRNAs was detected in all polarized cells whereas dentin sialoprotein gene was mainly expressed in mineralizing areas. This cell culture system allowed for the differentiation of pulp cells into odontoblasts, at both the morphological and functional level. Moreover, these cells presented a spatial organization similar to the odontoblastic layer.
Gram-positive bacteria entering the dentinal tissue during the carious process are suspected to influence the immune response in human dental pulp. Odontoblasts situated at the pulp/dentin interface are the first cells encountered by these bacteria and therefore could play a crucial role in this response. In the present study, we found that in vitro-differentiated odontoblasts constitutively expressed the pattern recognition receptor TLR1–6 and 9 genes but not TLR7, 8, and 10. Furthermore, lipoteichoic acid (LTA), a wall component of Gram-positive bacteria, triggered the activation of the odontoblasts. LTA up-regulated the expression of its own receptor TLR2, as well as the production of several chemokines. In particular, an increased amount of CCL2 and CXCL10 was detected in supernatants from LTA-stimulated odontoblasts, and those supernatants augmented the migration of immature dendritic cells in vitro compared with controls. Clinical relevance of these observations came from immunohistochemical analysis showing that CCL2 was expressed in vivo by odontoblasts and blood vessels present under active carious lesions but not in healthy dental pulps. In contrast with this inflammatory response, gene expression of major dentin matrix components (type I collagen, dentin sialophosphoprotein) and TGF-β1 was sharply down-regulated in odontoblasts by LTA. Taken together, these data suggest that odontoblasts activated through TLR2 by Gram-positive bacteria LTA are able to initiate an innate immune response by secreting chemokines that recruit immature dendritic cells while down-regulating their specialized functions of dentin matrix synthesis and mineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.