Much is known about bovine lactoperoxidase but no data are available on its primary structure. In this work its main active fraction was isolated from cow's milk and sequenced using a conventional strategy. A clear similarity was found with human myeloperoxidase, eosinophil peroxidase and thyroperoxidase, the sequences of which were recently elucidated from those of their cDNAs and/or genes. The single peptide chain of bovine lactoperoxidase contains 61 2 amino acid residues, including 15 half-cystines and 4 or 5 potential N-glycosylation sites. The corresponding peptide segments of human myeloperoxidase, eosinophil peroxidase and thyroperoxidase display 55%, 54% and 45% identity with bovine lactoperoxidase, respectively, with 14 out of the 15 half-cystines present in each of the four enzymes being located in identical positions. The occurrence of an odd number of halfcystines in bovine lactoperoxidase supports the recent finding of a heme thiol released from this enzyme by a reducing agent, suggesting that the heme is bound to the peptide chain via a disulfide linkage, since the absence of free thiol in the enzyme was reported long ago Closely related heme peroxidases have been detected in most mammalian exocrine secretions. They are believed to protect mucosal surfaces from microorganisms by catalyzing the production of toxic oxidizing agents from HzOz, and halides or SCN-, a pseudohalide. Two of them, bovine lactoperoxidase and human salivary peroxidase, have been especially studied (Tenovuo, 1985). Bovine lactoperoxidase was highly purified and characterized in the early forties (Theorell and Akeson, 1943). Although lactoperoxidase is able to oxidize Br-, I-and SCN-, Reiter and coworkers (1964) demonstrated that oxidation of SCN-was involved in the mechanism of the lactoperoxidase-catalyzed antibacterial effect in bovine milk. Aune and Thomas (1977) and Hoogendoorn et al. (1977) independently concluded that hypothiocyanite (OSCN-) was the main antibacterial species produced from SCN-and H 2 0 z .
Reactive oxygen species (ROS) are released during the inflammation of the synovial membrane associated with cartilage degradation in osteoarthritis. In this work, we exposed synoviocytes to superoxide anions at concentrations that may cause either apoptosis or necrosis. We studied membrane organization, dehydrogenase mitochondrial activity and nuclear morphology and integrity, to determine the nature of the death process initiated by superoxide anions and tried to counteract ROS effects with alpha-tocopherol. We found that oxidative stress caused synoviocytes to undergo a process of cell death of an apoptotic nature rather than necrotic. Mitochondrial injury occurred at an early stage, and the FITC-annexin-V-positive/propidium iodide-positive cells occurred later than the metabolic changes. DNA strand breaks were evident at 8 h and nuclear condensation at 24 h. No LDH activity was detected in culture supernatants. In our experimental conditions, alpha-tocopherol had little effect on stress damage; the antioxidant properties of this molecule did not affect the apoptosis caused by superoxide anions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.