The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives on the comprehensive properties of in situ produced PA6/FR systems. To this end, in situ water-catalyzed ring-opening polymerization of ε-caprolactam was conducted in the presence of three different bridged DOPO derivatives, e.g., one P−N bond phosphonamidate derivative and two P−C bond phosphinate derivatives. The selected bridged DOPO derivatives mainly act in the gas phase at the temperatures that relatively match the PA6 pyrolysis specifics. The effects of the FRs on the dispersion state, morphological, molecular, structural, melt-rheological, and thermal properties of the in situ synthesized PA6 were evaluated. The specific advantage of this approach is one-step production of PA6 with uniformly distributed nanodispersed FR, which was obtained in the case of all three applied FRs. However, the applied FRs differently interacted with monomer and polymer during the polymerization, which was reflected in the length of PA6 chains, crystalline structure, and melt-rheological properties. The applied FRs provided a comparable effect on the thermal stability of PA6 and stabilization of the PA6/FR systems above 450 °C in the oxygen-assisted pyrolysis. However, only with the specifically designed FR molecule were the comprehensive properties of the fiber-forming PA6 satisfied for the continuous conduction of the melt-spinning process.
Polyamide 6 is one of the key engineering polymers with excellent mechanical properties and resistance which enable its global production and wide use in the industrial and domestic plastic manufacturing. Polyamide 6 also represents an important raw material for the production of technical fi lament yarns. However, an important drawback associated with the fl ammability of PA6 fi bres has not been resolved yet. This paper reviews the most common halogen-free fl ame retardant additives for polyamide 6, their mode of action as well as diff erent strategies for the incorporation of fl ame retardant additives in the production process of fl ame ratardant polyamide 6 fi bres. The most recent research and patents on this topic are critically discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.