Complexes with mixed ligands [Cu(N-N)2(pmtp)](ClO4)2 ((1) N-N: 2,2′-bipyridine; (2) L: 1,10-phenanthroline and pmpt: 5-phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine) were synthesized and structurally and biologically characterized. Compound (1) crystallizes into space group Pa and (2) in P-1. Both complexes display an intermediate stereochemistry between the two five-coordinated ones. The biological tests indicated that the two compounds exhibited superoxide scavenging capacity, intercalative DNA properties, and metallonuclease activity. Tests on various cell systems indicated that the two complexes neither interfere with the proliferation of Saccharomyces cerevisiae or BJ healthy skin cells, nor cause hemolysis in the active concentration range. Nevertheless, the compounds showed antibacterial potential, with complex (2) being significantly more active than complex (1) against all tested bacterial strains, both in planktonic and biofilm growth state. Both complexes exhibited a very good activity against B16 melanoma cells, with a higher specificity being displayed by compound (1). Taken together, the results indicate that complexes (1) and (2) have specific biological relevance, with potential for the development of antitumor or antimicrobial drugs.
The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives on the comprehensive properties of in situ produced PA6/FR systems. To this end, in situ water-catalyzed ring-opening polymerization of ε-caprolactam was conducted in the presence of three different bridged DOPO derivatives, e.g., one P−N bond phosphonamidate derivative and two P−C bond phosphinate derivatives. The selected bridged DOPO derivatives mainly act in the gas phase at the temperatures that relatively match the PA6 pyrolysis specifics. The effects of the FRs on the dispersion state, morphological, molecular, structural, melt-rheological, and thermal properties of the in situ synthesized PA6 were evaluated. The specific advantage of this approach is one-step production of PA6 with uniformly distributed nanodispersed FR, which was obtained in the case of all three applied FRs. However, the applied FRs differently interacted with monomer and polymer during the polymerization, which was reflected in the length of PA6 chains, crystalline structure, and melt-rheological properties. The applied FRs provided a comparable effect on the thermal stability of PA6 and stabilization of the PA6/FR systems above 450 °C in the oxygen-assisted pyrolysis. However, only with the specifically designed FR molecule were the comprehensive properties of the fiber-forming PA6 satisfied for the continuous conduction of the melt-spinning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.