The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory pre-validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis, e.g., pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using six reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory pre-validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation), batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability) were tested. The pre-set acceptance criteria for the intra-laboratory pre-validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.
Within EU FP7 project NANOVALID, the (eco)toxicity of 7 well-characterized engineered nanomaterials (NMs) was evaluated by 15 bioassays in 4 laboratories. The highest tested nominal concentration of NMs was 100 mg/l. The panel of the bioassays yielded the following toxicity order: Ag > ZnO > CuO > TiO2 > MWCNTs > SiO2 > Au. Ag, ZnO and CuO proved very toxic in the majority of assays, assumingly due to dissolution. The latter was supported by the parallel analysis of the toxicity of respective soluble metal salts. The most sensitive tests/species were Daphnia magna (towards Ag NMs, 24-h EC50 = 0.003 mg Ag/l), algae Raphidocelis subcapitata (ZnO and CuO, 72-h EC50 = 0.14 mg Zn/l and 0.7 mg Cu/l, respectively) and murine fibroblasts BALB/3T3 (CuO, 48-h EC50 = 0.7 mg Cu/l). MWCNTs showed toxicity only towards rat alveolar macrophages (EC50 = 15.3 mg/l) assumingly due to high aspect ratio and TiO2 towards R. subcapitata (EC50 = 6.8 mg Ti/l) due to agglomeration of TiO2 and entrapment of algal cells. Finally, we constructed a decision tree to select the bioassays for hazard ranking of NMs. For NM testing, we recommend a multitrophic suite of 4 in vitro (eco)toxicity assays: 48-h D. magna immobilization (OECD202), 72-h R. subcapitata growth inhibition (OECD201), 30-min Vibrio fischeri bioluminescence inhibition (ISO2010) and 48-h murine fibroblast BALB/3T3 neutral red uptake in vitro (OECD129) representing crustaceans, algae, bacteria and mammalian cells, respectively. Notably, our results showed that these assays, standardized for toxicity evaluation of “regular” chemicals, proved efficient also for shortlisting of hazardous NMs. Additional assays are recommended for immunotoxicity evaluation of high aspect ratio NMs (such as MWCNTs).
Background: Silver nanoparticles (AgNPs) displayed strong activities in anti-bacterial, anti-viral, and anti-fungal studies and was reportedly efficient in treating otitis media .The potential impact of AgNPs on the inner ear was missing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.