Aspects of the lipid metabolism of Walker 256 carcinosarcoma‐bearing cachectic rats (TB) were investigated during a 14 day interval of tumour growth. Food intake and body weight of the TB rats were reduced by 18% and 13%, respectively, on day 14, as compared with non‐tumour‐bearing animals. The tumour burden then, corresponded to 19 % of total body weight. The total fat content was not different in the liver, heart, carcass, epididymal (EAT) and retroperitoneal (RPAT) adipose tissues of the two groups. The brown adipose tissue (BAT) and skeletal muscle (gastrocnemius‐SM) of the TB rats had increased levels of fat (23 % and 200 %, respectively). Enteral absorption of 14C‐triolein was decreased in the TB rats, but the liver, heart, and SM of these animals incorporated more radiolabelled lipid than the control animals, while the adipose tissues exhibited a decreased incorporation of radioactivity in relation to controls. More lipid was incorporated into the VLDL fraction secreted by the liver of TB rats, which exhibited a different distribution of the incorporated 14C‐oleate in the various lipid subfractions. Ultrastructural studies showed that the hepatocytes of the TB rats had a greater incidence of lipid droplets in the cytoplasm.
Background Cancer cachexia (CCx) is a multifactorial energy-wasting syndrome reducing the efficiency of anti-cancer therapies, quality of life, and survival of cancer patients. In the past years, most studies focused on the identification of tumour and host-derived proteins contributing to CCx. However, there is still a lack of studies addressing the changes in bioactive lipids. The aim of this study was to identify specific lipid species as a hallmark of CCx by performing a broad range lipid analysis of plasma from well-established CCx mouse models as well as cachectic and weight stable cancer patients. Methods Plasma from non-cachectic (PBS-injected mice, NC26 tumour-bearing mice), pre-cachectic and cachectic mice (C26 and LLC tumour-bearing mice, Apc Min/+ mutant mice), and plasma from weight stable and cachectic patients with gastrointestinal cancer, were analysed using the Lipidyzer ™ platform. In total, 13 lipid classes and more than 1100 lipid species, including sphingolipids, neutral and polar glycerolipids, were covered by the analysis. Correlation analysis between specific lipid species and readouts of CCx were performed. Lipidomics data were confirmed by gene expression analysis of metabolic organs to analyse enzymes involved in sphingolipid synthesis and degradation. Results A decrease in several lysophosphatidylcholine (LPC) species and an increase in numerous sphingolipids including sphingomyelins (SMs), ceramides (CERs), hexosyl-ceramides (HCERs) and lactosyl-ceramides (LCERs), were mutual features of CCx in both mice and cancer patients. Notably, sphingolipid levels gradually increased during cachexia development. Key enzymes involved in ceramide synthesis were elevated in liver but not in adipose, muscle, or tumour tissues, suggesting that ceramide turnover in the liver is a major contributor to elevated sphingolipid levels in
IntroductionCOVID-19 may lead to persistent and potentially incapacitating clinical manifestations (post-acute sequelae of SARS-CoV-2 infection (PASC)). Using easy-to-apply questionnaires and scales (often by telephone interviewing), several studies evaluated samples of COVID-19 inpatients from 4 weeks to several months after discharge. However, studies conducting systematic multidisciplinary assessments of PASC manifestations are scarce, with thorough in-person objective evaluations restricted to modestly sized subsamples presenting greatest disease severity.Methods and analysesWe will conduct a prospective observational study of surviving individuals (above 18 years of age) from a cohort of over 3000 subjects with laboratory-confirmed COVID-19 who were treated as inpatients at the largest academic health centre in Sao Paulo, Brazil (Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo). All eligible subjects will be consecutively invited to undergo a 1–2-day series of multidisciplinary assessments at 2 time-points, respectively, at 6–9 months and 12–15 months after discharge. Assessment schedules will include detailed multidomain questionnaires applied by medical research staff, self-report scales, objective evaluations of cardiopulmonary functioning, physical functionality and olfactory status, standardised neurological, psychiatric and cognitive examinations, as well as diagnostic laboratory, muscle ultrasound and chest imaging exams. Remaining material from blood tests will be incorporated by a local biobank for use in future investigations on inflammatory markers, genomics, transcriptomics, peptidomics and metabolomics.Ethics and disseminationAll components of this programme have been approved by local research ethics committees. We aim to provide insights into the frequency and severity of chronic/post-COVID multiorgan symptoms, as well as their interrelationships and associations with acute disease features, sociodemographic variables and environmental exposures. Findings will be disseminated in peer-reviewed journals and at scientific meetings. Additionally, we aim to provide a data repository to allow future pathophysiological investigations relating clinical PASC features to biomarker data extracted from blood samples.Trial registration numberRBR-8z7v5wc; Pre-results.
Cancer-associated cachexia is a complex metabolic syndrome characterized by weight loss and systemic inflammation. Muscle loss and fatty infiltration into muscle are associated with poor prognosis in cancer patients. Skeletal muscle secretes myokines, factors with autocrine, paracrine and/or endocrine action, which may be modified by or play a role in cachexia. This study examined myokine content in the plasma, skeletal muscle and tumor homogenates from treatment-naïve patients with gastric or colorectal stages I-IV cancer with cachexia (CC, N ¼ 62), or not (weight stable cancer, WSC, N ¼ 32). Myostatin, interleukin (IL) 15, follistatin-like protein 1 (FSTL-1), fatty acid binding protein 3 (FABP3), irisin and brain-derived neurotrophic factor (BDNF) protein content in samples was measured with Multiplex technology; body composition and muscle lipid infiltration were evaluated in computed tomography, and quantification of triacylglycerol (TAG) in the skeletal muscle. Cachectic patients presented lower muscle FSTL-1 expression (p ¼ 0.047), higher FABP3 plasma content (p ¼ 0.0301) and higher tumor tissue expression of FABP3 (p ¼ 0.0182), IL-15 (p ¼ 0.007) and irisin (p ¼ 0.0110), compared to WSC. Neither muscle TAG content, nor muscle attenuation were different between weight stable and cachectic patients. Lumbar adipose tissue (AT) index, visceral AT index and subcutaneous AT index were lower in CC (p ¼ 0.0149, p ¼ 0.0455 and p ¼ 0.0087, respectively), who also presented lower muscularity in the cohort (69.2% of patients; p ¼ 0.0301), compared to WSC. The results indicate the myokine profile in skeletal muscle, plasma and tumor is impacted by cachexia. These findings show that myokines eventually affecting muscle wasting may not solely derive from the muscle itself (as the tumor also may
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.