The 2014–2016 West African outbreak of Ebola Virus Disease (EVD) was the largest and most deadly to date. Contact tracing, following up those who may have been infected through contact with an infected individual to prevent secondary spread, plays a vital role in controlling such outbreaks. Our aim in this work was to mechanistically represent the contact tracing process to illustrate potential areas of improvement in managing contact tracing efforts. We also explored the role contact tracing played in eventually ending the outbreak. We present a system of ordinary differential equations to model contact tracing in Sierra Leonne during the outbreak. Using data on cumulative cases and deaths, we estimate most of the parameters in our model. We include the novel features of counting the total number of people being traced and tying this directly to the number of tracers doing this work. Our work highlights the importance of incorporating changing behavior into one’s model as needed when indicated by the data and reported trends. Our results show that a larger contact tracing program would have reduced the death toll of the outbreak. Counting the total number of people being traced and including changes in behavior in our model led to better understanding of disease management.
Despite the enormous progress in prevention and treatment, tuberculosis disease remains a leading cause of death worldwide and one of the major sources of concern is the drug resistant strain, MDR-TB (multidrug resistant tuberculosis) and XDR-TB (extensively drug resistant tuberculosis). In this work, we extend the standard SEIRS epidemiology model of tuberculosis to include MDR-TB. For that, we considered compartments of susceptible, exposed, infected, resistant to a first line of treatment and recovered humans and we modeled the natural growth, the interactions between these populations and the effects of treatments. We calculate the basic reproduction number, 0 , using the next generation method. The DFE and the EE are established and their stability analysis done to show that they are locally and globally asymptotically stable. Numerical analysis for the model with and without delay is done and demonstrated that in the case of patients with both active tuberculosis and MDR tuberculosis, both strains will still persist due to lack of permanent immunity to tuberculosis while the recovered can still lose their immunity to become susceptible again.
In this study, we develop an SIS model for two types of mosquitoes, a traditional one and one that is resistant to IRS and ITNs. The resistant mosquito develops behavioral adaptation to control measures put in place to reduce their biting rate. They also bite early before dusk and later after dark when people are outside the houses and nets. We determine the effect of the two types of mosquitoes on malaria transmission in Kenya. The basic reproduction number 0 is established as a sharp threshold that determines whether the disease dies out or persists in the population. Precisely, if 0 ≤ 1, the disease-free equilibrium is globally asymptotically stable and the disease always dies out and if 0 > 1, there exists a unique endemic equilibrium which is globally stable and the disease persists. The contribution of the two types of mosquitoes to the basic reproduction number and to the level of the endemic equilibrium is analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.