SUMMARY Clinical RelevanceWithin the limited experimental conditions, self-adhesive cements provided a higher degree of conversion values when light-activated. In addition, the results showed that, after 15 minutes, the degree of conversion values increased for all materials in both activation modes.
In this study, the in vitro bond strength of dual-curing resin cements to indirect composite restorations when the cement was either light polymerized or allowed to only autopolymerize was evaluated. Occlusal dentin surfaces of 56 extracted human third molars were flattened to expose coronal dentin. Teeth were assigned to eight groups (n = 7) according to resin cement products and polymerization modes: conventional cement (Panavia F 2.0; Kuraray Medical) and self-adhesive cements [RelyX Unicem (3M ESPE), BisCem (Bisco), and G-Cem (GC Corp.)]. Cements were applied to prepolymerized resin discs (2-mm-thick Sinfony; 3M ESPE), which were subsequently bonded to the prepared dentin surfaces. The restored teeth were either light-polymerized through the overlying composite according to manufacturers' instructions or were allowed to only self-cure. After 24 h, the teeth and restorations were sectioned to obtain multiple bonded beams (1.0 mm(2)) and tested in tension at a crosshead speed of 0.5 mm/min until failure. Data (MPa) were analyzed by two-way ANOVA and Tukey test (alpha = 0.05). Light activation of some cement systems (G-Cem and Panavia F 2.0) increased the bond strength, while the curing mode did not affect the bond strength for some (RelyX Unicem and BisCem). The bond strength in the autopolymerized mode varied among products. In general, the use of self-adhesive resin cements did not provide significantly higher bond strengths than that of a conventional material, and two self-adhesive cements yielded significantly lower bond values (regardless of cure mode) than the other products.
This study showed that silorane-based composites demonstrated acceptable performance in all parameters studied (water sorption, solubility, and roughness), supporting their use as an alternative restorative material. SUMMARYObjective: The objective of this study was to evaluate the surface roughness (SR), water sorption (WS), and solubility (SO) of four composite resins after finishing/polishing and after one year of water storage. ; and Astropol F, P, HP, Ivoclar Vivadent) were used according to the manufacturers' instructions. Ten disc-shaped specimens of each composite resin were made for each evaluation. Polished surfaces were analyzed using a profilometer after 24 hours and one year. For the WS and SO, the discs were stored in desiccators until constant mass was achieved. Specimens were then stored in water for seven days or one year, at which time the mass of each specimen was measured. The specimens were dried again and dried specimen mass determined. The WS and SO were calculated from these measurements. Data were analyzed by two-way analysis of variance and Tukey post hoc test (a=0.05).Results: Filtek Silorane showed the lowest SR, WS, and SO means. Water storage for one year increased the WS means for all composite resins tested.
The use of AP between alloy metal surfaces and resin cements did not increase the bond strength for most cementing systems evaluated.
The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.