Silica polymerization in a supersaturated aqueous solution of sodium silicate is a fundamental mineralization process with broad relevance for technical applications as well as for biological processes. To contribute to a better understanding of the mechanism underlying the polymerization of sodium silicate under ambient conditions, a combined multiangle static and dynamic light scattering study on the evolution of particle mass and size is applied for the first time in a time-resolving manner. The light scattering experiments are complemented by a time-resolved analysis of the decay of the concentration of monomeric silicate by means of the silicomolybdate method. Particle formation was investigated at a variable concentration of silicate at pH 7 and 8. The joint experiments revealed a loss of monomers, which is parallel to the formation of compact, spherical particles growing by a monomer-addition process. An increase in the silicate content of up to 750 ppm increased the extent of nucleation and at the same time decreased the lag time observed between the start of the reaction and the actual onset of the growth of particles. Once the silica content is considerably larger than 1000 ppm, the formation of particles is succeeded by particle-particle agglomeration leading to larger fractal-like particles. By the time agglomeration becomes noticeable with light scattering, the monomer concentration has already reached its equilibrium value. An increase in the pH to 8 again revealed particle formation via a monomer-addition process. However, the extent of nucleation was increased and particle-particle agglomeration was inhibited even at an initial silica content of 2000 ppm.
The early stages of silica polymerization in aqueous solution proceed according to a mechanism based on three steps: nucleation, particle growth, and agglomeration of the particles. Application of time-resolved static and dynamic light scattering as a powerful in situ technique in combination with spectrophotometric analysis of the monomer consumption based on the molybdenum blue method was carried out to further investigate this 3-step process. Experiments were carried out at four different initial silicic acid contents covering a range between 350 and 750 ppm in the presence of either 10 mM NaCl or 5 mM of a mixture of CaCl and MgCl. The process in all cases was initiated with a drop of pH to 7. Addition of the salts made possible an analysis of the impact of an electrolyte on the process. Independent of the presence or absence of salt, particle growth in step two proceeded as a monomer-addition process without being interfered significantly by Ostwald-ripening. The growing particles were compact with a homogeneous density. The size of the particles approached final values between 5 and 20 nm with the actual value increasing with decreasing initial silicic acid content. Above a certain concentration of initial silica content, which depends on the level of added salt, particle-particle interactions caused agglomeration. The presence of electrolyte shifted this level from ∼2000 ppm to a range between 500 and 750 ppm. The resulting agglomerates had a fractal dimension of 2. Independent of the conditions, particle growth could be described with a simple nucleation and growth model.
In the context of plastics recycling, plastics are processed several times. With each new melting and extrusion the plastic is damaged, which can have a negative effect on product properties. To counteract material damage, special additives such as chain extenders can be used, which are intended to lead to post-polymerization during processing. A linear chain extension is important here, as branching and crosslinking can lead to uncontrolled changes in the plastic’s properties. To investigate the suitability of specialized linear chain extenders for polyamides, a polyamide-6 was processed several times and the molar mass distribution was evaluated after each extrusion cycle. Three series of tests were carried out. First, the plastic was regranulated five times without additives and twice with different concentrations of chain extenders on a twin-screw extruder. The results of the study show that not only can molar mass degradation be prevented with the appropriate additive, it is even possible to achieve a material buildup during processing. In our experiments, the polydispersity of the molar mass distribution remained nearly identical despite multiple extrusions. Thus, reactive extrusion makes it possible for the corresponding plastics to be processed several times without the molar mass decreasing. If a sufficiently pure material flow can be ensured during recycling, the number of possible reprocessings of the plastic can be significantly increased without the need to add virgin material.
Furfuryl amine-functionalized few-layered graphene was prepared via a mechanochemical process by a [4 + 2] cycloaddition under solvent-free conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.