High nERbeta2 is an independent marker of early relapse in ERalpha-negative breast carcinoma, and in particular, in the nERbeta1-negative, the post-menopausal patient and the triple-negative subgroups. These findings suggest that inhibition of expression and/or function of ERbeta2 could improve disease outcome.
Our study confirms the prognostic significance of K19 expression in Caucasian patients with HCCs, providing further evidence that it may be used to stratify HCC according to tumour aggressiveness.
E2F-1 is a transcription factor involved in DNA synthesis and repair, cell proliferation, and apoptosis. Hyposphorylated pRb represses E2F-1 action in early G1 phase, while in late G1, pRb hyperphosphorylation leads to E2F-1 release and activation. In vitro studies have shown that E2F-1 may act either as oncogene or as tumor suppressor gene. We evaluated immunohistochemical expression of E2F-1 protein in chronic viral liver disease and hepatocellular carcinoma (HCC) and correlated this with clinicopathological parameters, cell proliferation, apoptosis, and the expression of E2F-1-regulators, pRb, and phospho-pRb (Ser795). In liver biopsies from 30 patients with chronic viral hepatitis, including 22 with cirrhosis without HCC, and 57 with cirrhosis with HCC, E2F-1 expression was assessed by immunohistochemistry. In chronic hepatitis and cirrhosis, hepatocytes and cholangiocytes demonstrated mild cytoplasmic and/or nuclear membrane E2F-1 immunostaining. In contrast, all HCC (100 %) showed strong nuclear E2F-1 immunostaining, with or without membrane accentuation, while a minority demonstrated additional moderate cytoplasmic immunostaining. Abnormally low pRb and phospho-pRb expression was seen in 70 % and 67.9 % of HCC, respectively. In HCC, nuclear E2F-1 expression was inversely correlated with phospho-pRb expression (p = 0.001) and positively related to tumor apoptotic index (p = 0.025). No significant correlation was found between E2F-1 expression and patient demographics, HCC etiology, tumor grade, pRb, p53 expression, or cell proliferation. In conclusion, we show that the increased expression of E2F-1 protein in human HCC is correlated with enhanced tumor cell apoptosis supporting a pro-apoptotic role of E2F-1 in human HCC.
BackgroundWe examined the intrinsic hepatic innervation after partial hepatectomy (PH) in rats and the presence and pattern of neural sprouting in regenerating liver.MethodsMale Wistar rats (age 9–13 weeks-w, weight 204-356 g), were submitted to two-thirds PH. Rats were sacrificed at postoperative days (d) 1, 3, 5, 7, at 2 and 4 w, and at 3 and 6 months (m) (6–7 animals/group, control group n = 4). Immunohistochemistry for the pan-neural marker protein gene product 9.5 (PGP9.5) and growth-associated protein 43 (GAP-43), a marker of regenerating nerve axons, was performed on tissue sections from the R1 lobe of the regenerating liver. Portal tracts (PTs) with immunoreactive fibers were counted in each section and computer-assisted morphometric analysis (Image Pro Plus) was used to measure nerve fiber density (number of immuno-positive nerve fibers/mm2 (40x)).ResultsImmunoreactivity for PGP9.5 was positive in all groups. The number of PGP9.5 (+) nerve fibers decreased from 0.32 +/− 0.12 (control group) to 0.18 +/− 0.09 (1d post-PH group), and gradually increased reaching pre-PH levels at 6 m (0.3 +/− 0.01). In contrast, immunoreactivity for GAP-43 was observed at 5d post-PH, and GAP-43 (+) PTs percentage increased thereafter with a peak at 3 m post-PH. GAP-43 (+) nerve fiber density increased gradually from 5d (0.05 +/− 0.06) with a peak at 3 m post-PH (0.21 +/− 0.027). At 6 m post-PH, immunoreactivity for GAP-43 was not detectable.ConclusionsFollowing PH in rats: 1) nerve fiber density in portal tracts decreases temporarily, and 2) neural sprouting in the regenerating liver lobes starts at 5d, reaches peak levels at 3 m and disappears at 6 m post-PH, indicating that the increase in hepatic mass after PH provides an adequate stimulus for the sprouting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.