1 Neutrophil infiltration, proinflammatory cytokines, eicosanoid generation and oxidative stress have been implicated in colitis. Resveratrol is a polyphenolic compound found in grapes and wine, with multiple pharmacological actions, including anti-inflammatory, antioxidant, antitumour and immunomodulatory activities. In a previous report, we documented that resveratrol decreases the degree of inflammation associated with acute experimental colonic inflammation, but its effects on chronic experimental colitis remain undetermined. 2 The aim of this research was to investigate the effects of resveratrol on the chronic colonic injury caused by intracolonic instillation of trinitrobenzenesulphonic acid (TNBS) in rats. The inflammatory response was assessed by histology and myeloperoxidase activity. Tumour necrosis factor alpha (TNF-a) production, histological and histochemical analysis of the lesions were also carried out. We determined the production of prostaglandin (PG) E 2 and D 2 in colon mucosa, as well as cyclooxygenase (COX)-1 and -2 and nuclear transcription factor NF-kappa B (NF-kB) p65 protein expression. Finally, since resveratrol has been found to modulate apoptosis, we intended to elucidate its effects on colonic mucosa under chronic inflammatory conditions. 3 Resveratrol (10 mg kg À1 day
À1) significantly attenuated the damage score and corrected the disturbances in morphology associated to injury. In addition, the degree of neutrophil infiltration and the levels of TNF-a were significantly ameliorated. Resveratrol did not modify PGD 2 levels but returned the decreased PGE 2 values to basal levels and also reduced COX-2 and the NF-kB p65 protein expression. Furthermore, treatment of rats with resveratrol caused a significant increase of TNBS-induced apoptosis in colonic cells. 4 In conclusion, resveratrol reduces the damage in chronic experimentally induced colitis, alleviates the oxidative events, returns PGE 2 production to basal levels and stimulates apoptosis in colonic cells.
: Melatonin (N‐acetyl‐5‐methoxytryptamine) is an indoleamine with a range of antioxidative properties. Melatonin is endogenously produced in the eye and in other organs. Current evidence suggests that melatonin may act as a protective agent in ocular conditions such as photo‐keratitis, cataract, glaucoma, retinopathy of prematurity and ischemia/reperfusion injury. These diseases are sight‐threatening and they currently remain, for the most part, untreatable. The pathogenesis of these conditions is not entirely clear but oxidative stress has been proposed as one of the causative factors. Elevated levels of various reactive oxygen and nitrogen species have been identified in diseased ocular structures. These reactants damage the structure and deplete the eye of natural defense systems, such as the antioxidant, reduced glutathione, and the antioxidant enzyme superoxide dismutase. Oxidative damage in the eye leads to apoptotic degeneration of retinal neurons and fluid accumulation. Retinal degeneration decreases visual sensitivity and even a small change in the fluid content of the cornea and crystalline lens is sufficient to disrupt ocular transparency. In the eye, melatonin is produced in the retina and in the ciliary body. Continuous regeneration of melatonin in the eye offers a frontier antioxidative defense for both the anterior and posterior eye. However, melatonin production is minimal in newborns and its production gradually wanes in aging individuals as indicated by the large drop in circulating blood concentrations of the indoleamine. These individuals are possibly at risk of contracting degenerative eye diseases that are free radical‐based. Supplementation with melatonin, a potent antioxidant, in especially the aged population should be considered as a prophylaxis to preserve visual functions. It may benefit many individuals worldwide, especially in countries where access to medical facilities is limited.
Oleuropein (OL) is the most prominent phenolic compound in the fruit of olive tree. Although OL has shown powerful anticancer activity the underlying action mechanism remains largely unknown. The present study evaluated the effects of OL on hydroxityrosol (HT)-29 human colon adenocarcinoma cells in comparison to hydroxytyrosol, its hydrolysis product, and to elucidate the underlying anticancer molecular mechanisms involved. Cell proliferation was determined using SRB assay. Cell cycle and apoptosis were assessed by flow cytometry and changes in MAPK cascade protein expression, HIF-1α, p53, PPARγ, and NFKβ signaling pathways by Western blot. Although OL showed less potency than HT, in terms of cell growth inhibition, induced significant changes in cell cycle analysis and caused a significant increase in the apoptotic population. Both compounds produced a remarkable decrease in HIF-1α protein and an upregulation of p53 protein expression. However, no significant changes in IkB-α and MAPK cascade protein expressions were observed. HT produced a significant upregulation in peroxisome proliferator-activated receptor gamma (PPARγ) expression whereas OL failed. PPARγ upregulation may be one of the principal mechanisms of the tumor shrinkage by HT. Our novel findings demonstrate that OL limits the growth and induces apoptosis in HT-29 cells via p53 pathway activation adapting the HIF-1α response to hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.