Galium verum L. (G. verum, lady’s bedstraw) is a perennial herbaceous plant, belonging to the Rubiaceae family. It has been widely used throughout history due to multiple therapeutic properties. However, the effects of this plant species on functional recovery of the heart after ischemia have still not been fully clarified. Therefore, the aim of our study was to examine the effects of methanol extract of G. verum on myocardial ischemia/reperfusion (I/R) injury in spontaneously hypertensive rats (SHR), with a special emphasis on the role of oxidative stress. Rats involved in the research were divided randomly into two groups: control (spontaneously hypertensive rats (SHR)) and G. verum group, including SHR rats treated with the G. verum extract (500 mg/kg body weight per os) for 4 weeks. At the end of the treatment, in vivo cardiac function was assessed by echocardiography. Rats were sacrificed and blood samples were taken for spectrophotometric determination of systemic redox state. Hearts from all rats were isolated and retrogradely perfused according to the Langendorff technique. After a stabilization period, hearts were subjected to 20-minute ischemia, followed by 30-minute reperfusion. Levels of prooxidants were spectrophotometrically measured in coronary venous effluent, while antioxidant enzymes activity was assessed in heart tissue. Cell morphology was evaluated by hematoxylin and eosin (HE) staining. 4-week treatment with G. verum extract alleviated left ventricular hypertrophy and considerably improved in vivo cardiac function. Furthermore, G. verum extract preserved cardiac contractility, systolic function, and coronary vasodilatory response after ischemia. Moreover, it alleviated I/R-induced structural damage of the heart. Additionally, G. verum extract led to a drop in the generation of most of the measured prooxidants, thus mitigating cardiac oxidative damage. Promising potential of G. verum in the present study may be a basis for further researches which would fully clarify the mechanisms through which this plant species triggers cardioprotection.
As proper wound management is crucial to reducing morbidity and improving quality of life, this study evaluated for the first time the wound healing potential of H. italicum essential oil (HIEO) prepared in the form of ointment and gel in streptozotocin-induced diabetic wound models in rats. After creating full-thickness cutaneous wounds, forty-eight diabetic rats were divided into six groups: (1) negative control; (2) positive control; (3) ointment base; (4) gel base; (5) 0.5% HIEO ointment (6) 0.5% HIEO gel. Wound healing potential was determined by the percentage of wound contraction, hydroxyproline content, redox status, and histological observation. A significant decrease in the wound size was observed in animals treated with HIEO formulations compared with other groups. The HIEO groups also showed a higher level of total hydroxyproline content, and more pronounced restitution of adnexal structures with only the underlying muscle defect indicating the incision site. Hence, our results legitimate the traditional data of the pro-healing effect of HIEO because HIEO in both formulations such as gel and ointment exhibited the significant wound repairing effect in the incision wound model.
Galium verum L. and Galium mollugo L. are perennial herbaceous plants, belonging to the Rubiaceae family. Several classes of bioactive compounds, such as iridoid glycosides, phenolic compounds, anthraquinones and triterpenes, as well as small amounts of tannins, saponins, essential oils have been isolated from Galium species so far. Plants belonging to this genus have a long history of use in a traditional medicine for the treatment of many diseases and conditions. Th e main application of G. verum is as diuretic, choleretic and as the treatment for gout and epilepsy. On the other hand, G. mollugo has been used to treat hysteria, epilepsy, as vulnerary. Over the past decades, numerous papers have been published referring to the chemical constituents presented in G. verum and G. mollugo extracts. Additionally, chemical composition and pharmacological effects of G. verum have been investigated, however data related to the effects of G. mollugo is limited. In this review, we summarized the current knowledge on the phytochemical and pharmacological properties of G. verum and G. mollugo. Finally, we proposed directions for future research in this field, which can improve our understanding of the potential health benefits of Galium species.
This review aimed to provide a summary on the traditional uses, phytochemistry, and pharmacological activities in the cardiovascular system and cardiotoxicity of Melissa officinalis (MO), with the special emphasis on the protective mechanisms in different cardiovascular pathologies. MO is a perennial aromatic herb commonly known as lemon balm, honey balm, or bee balm, which belongs to Lamiaceae family. Active components are mainly located in the leaves or essential oil and include volatile compounds, terpenoid (monoterpenes, sesquiterpenes, triterpenes), and polyphenolic compounds [rosmarinic acid (RA), caffeic acid, protocatechuic acid, quercitrin, rhamnocitrin, luteolin]. For centuries, MO has been traditionally used as a remedy for memory, cognition, anxiety, depression, and heart palpitations. Up until now, several beneficial cardiovascular effects of MO, in the form of extracts (aqueous, alcoholic, and hydroalcoholic), essential oil, and isolated compounds, have been confirmed in preclinical animal studies, such as antiarrhythmogenic, negative chronotropic and dromotropic, hypotensive, vasorelaxant, and infarct size–reducing effects. Nonetheless, MO effects on heart palpitations are the only ones confirmed in human subjects. The main mechanisms proposed for the cardiovascular effects of this plant are antioxidant free radical–scavenging properties of MO polyphenols, amelioration of oxidative stress, anti-inflammatory effects, activation of M2 and antagonism of β1 receptors in the heart, blockage of voltage-dependent Ca2+ channels, stimulation of endothelial nitric oxide synthesis, prevention of fibrotic changes, etc. Additionally, the main active ingredient of MO-RA, per se, has shown substantial cardiovascular effects. Because of the vastness of encouraging data from animal studies, this plant, as well as the main ingredient RA, should be considered and investigated further as a tool for cardioprotection and adjuvant therapy in patients suffering from cardiovascular diseases.
The formation of host-guest inclusion complex of levofloxacin with b-cyclodextrin (b-CD) was studied by fluorescence spectroscopy in buffer solution (pH 7.4) at 298 K. The experimental results confirmed the existence of 1:1 inclusion complex of levofloxacin with b-CD. The association constant of the b-CD inclusion complex was obtained from the Benesi-Hildebrand equation. The formation of the inclusion complex was confirmed by the IR and 1 H NMR technique. The complex formation equilibria between Gd(III) ion and levofloxacin were investigated in aqueous solutions without and in the presence of b-cyclodextrin. The stoichiometry and stability constants of the formed complexes are reported, and the concentration distribution of the various complex species has been evaluated as a function of pH. The effect of b-cyclodextrin on dissociation constants, K a , of levofloxacin and stability constants of gadolinium(III)-levofloxacin complexes, b p,q,r , were examined. Furthermore, effect of levofloxacin on the speciation and distribution Gd(III) in human blood plasma was evaluated by computer simulation. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.