This paper aims to compare different design alternatives of hardware-in-the-loop (HIL) for emulating power converters in Field Programmable Gate Arrays (FPGAs). It proposes various numerical formats (fixed and floating-point) and different approaches (pure VHSIC Hardware Description Language (VHDL), Intellectual Properties (IPs), automated MATLAB HDL code, and High-Level Synthesis (HLS)) to design power converters. Although the proposed models are simple power electronics HIL systems, the idea can be extended to any HIL system. This study compares the design effort of different coding methods and numerical formats considering possible synthesis tools (Precision and Vivado), and it comprises an analytical discussion in terms of area and speed. The different models are synthesized as ad-hoc modules in general-purpose FPGAs, but also using the NI myRIO device as an example of a commercial tool capable of implementing HIL models. The comparison confirms that the optimum design alternative must be chosen based on the application (complexity, frequency, etc.) and designers’ constraints, such as available area, coding expertise, and design effort.
The use of Hardware-in-the-Loop (HIL) systems implemented in Field Programmable Gate Arrays (FPGAs) is constantly increasing because of its advantages compared to traditional simulation techniques. This increase in usage has caused new challenges related to the improvement of their performance and features like the number of output channels, while the price of HIL systems is diminishing. At present, the use of low-speed Digital-to-Analog Converters (DACs) is starting to be a commercial possibility because of two reasons. One is their lower price and the other is their lower pin count, which determines the number and price of the FPGAs that are necessary to handle those DACs. This paper compares four filtering approaches for providing suitable data to low-speed DACs, which help to filter high-speed input signals, discarding the need of using expensive high-speed DACS, and therefore decreasing the total cost of HIL implementations. Results show that the selection of the appropriate filter should be based on the type of the input waveform and the relative importance of the dynamics versus the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.