Pendrin (Pds; Slc26A4) is a new anion exchanger that is believed to mediate apical Cl(-)/HCO(3)(-) exchange in type B and non-A-non-B intercalated cells of the connecting tubule and cortical collecting duct. Recently, it has been proposed that this transporter may be involved in NaCl balance and blood pressure regulation in addition to its participation in the regulation of acid-base status. The purpose of our study was to determine the regulation of Pds protein abundance during chronic changes in chloride balance. Rats were subjected to either NaCl, NH(4)Cl, NaHCO(3), KCl, or KHCO(3) loading for 6 days or to a low-NaCl diet or chronic furosemide administration. Pds protein abundance was estimated by semiquantitative immunoblotting in renal membrane fractions isolated from the cortex of treated and control rats. We observed a consistent inverse relationship between Pds expression and diet-induced changes in chloride excretion independent of the administered cation. Conversely, NaCl depletion induced by furosemide was associated with increased Pds expression. We conclude that Pds expression is specifically regulated in response to changes in chloride balance.
Recent studies indicate that pendrin, an apical Cl ؊ /HCO 3 ؊ exchanger, mediates chloride reabsorption in the connecting tubule and the cortical collecting duct and therefore is involved in extracellular fluid volume regulation. The purpose of this study was to test whether pendrin is regulated in vivo primarily by factors that are associated with changes in renal chloride transport, by aldosterone, or by the combination of both determinants. For achievement of this goal, pendrin protein abundance was studied by semiquantitative immunoblotting in different mouse models with altered aldosterone secretion or tubular chloride transport, including NaCl loading, hydrochlorothiazide administration, NaCl co-transporter knockout mice, and mice with Liddle's mutation. The parallel regulation of the aldosterone-regulated epithelial sodium channel (ENaC) was examined as a control for biologic effects of aldosterone. Major changes in pendrin protein expression were found in experimental models that are associated with altered renal chloride transport, whereas no significant changes were detected in pendrin protein abundance in models with altered aldosterone secretion. Moreover, in response to hydrochlorothiazide administration, pendrin was downregulated despite a marked secondary hyperaldosteronism. In contrast, ␣-ENaC was markedly upregulated, and the molecular weight of a large fraction of ␥-ENaC subunits was shifted from 85 to 70 kD, consistent with previous results from rat models with elevated plasma aldosterone levels. These results suggest that factors that are associated with changes in distal chloride delivery govern pendrin expression in the connecting tubule and cortical collecting duct.
Heart rate (HR) predicts cardiovascular morbidity and mortality in individuals either with or without diabetes. In type 2 diabetic patients, cardiac autonomic neuropathy is a risk marker for cardiac morbidity and mortality. A major pathogenic potential may be attributed to vagal depression and sympathetic predominance. In this issue of Diabetologia, Berkelaar et al
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.