In order to find genetic markers to improve the meat quality of pigs by breeding we studied the relationship between variation in the heart fatty acid-binding protein (H-FABP) gene (FABP3) and intramuscular fat (IMF) content. To estimate the effect of H-FABP, pigs from two Duroc populations were selectively mated in such a way that at least two genotypes were present in each litter. In total, data from 983 pigs and pedigree information from three preceding generations were analyzed. Offspring were tested for IMF content as well as backfat thickness (BFT), BW, and drip loss of the meat (DRIP). All pigs were assigned to H-FABP RFLP genotype classes either by the assessed genotype (75%) or based on a probability score determined according to genotypic information of their relatives (25%). Contrasts were detected between homozygous H-FABP RFLP genotype classes for IMF content (.4%, P < .05), BFT (.6 mm, P < .01), and BW (2.4 kg, P < .10). No significant contrasts were detected for DRIP. Results for IMF content, BFT, and BW were confirmed when only genotyped animals were analyzed. Variation in BFT partially explained the effect on IMF content. Although other closely linked genes on porcine chromosome 6 might be responsible for the observed effect, interference of the halothane gene was excluded because all parental animals were noncarriers. In conclusion, H-FABP RFLP can be used as markers to select for increased IMF content and growth in breeding programs.
The porcine A-FABP gene (FABP4) was isolated and sequenced to study the role of A-FABP in the differentiation of intramuscular fat (IMF) accretion in pigs. The coding sequence of the porcine A-FABP gene is highly conserved across human, mouse, and rat. Moreover, all the functionally important amino acids are conserved. This high similarity extends into the first 270 bp of the 5' upstream region. Within this region, a 56-bp nucleotide sequence was completely identical with the corresponding sequence in the mouse A-FABP gene, which contains the transcription factor binding sites for C/EBP and AP-1, and is implicated in the differentiation-dependent regulation of A-FABP. The A-FABP gene was assigned to porcine Chromosome (Chr) 4 by a porcine sequence-specific PCR on a cell hybrid panel, fully consistent with comparative mapping data with human and mouse. In the first intron of the porcine A-FABP gene, a microsatellite sequence was detected that was polymorphic for all six pig breeds tested. This genetic variation within the A-FABP gene was associated with differences in IMF content and possibly growth in a Duroc population, whereas no effect on backfat thickness and drip loss of the meat were detected. A considerable and significant contrast of approximately 1% IMF was observed between certain genotype classes. We conclude that the A-FABP locus is involved in the regulation of intramuscular fat accretion in Duroc pigs.
Ten genes (ANK1, bR10D1, CA3, EPOR, HMGA2, MYPN, NME1, PDGFRA, ERC1, TTN), whose candidacy for meat-quality and carcass traits arises from their differential expression in prenatal muscle development, were examined for association in 1700 performance-tested fattening pigs of commercial purebred and crossbred herds of Duroc, Pietrain, Pietrain x (Landrace x Large White), Duroc x (Landrace x Large White) as well as in an experimental F(2) population based on a reciprocal cross of Duroc and Pietrain. Comparative sequencing revealed polymorphic sites segregating across commercial breeds. Genetic mapping results corresponded to pre-existing assignments to porcine chromosomes or current human-porcine comparative maps. Nine of these genes showed association with meat-quality and carcass traits at a nominal P-value of < or = 0.05; PDGFRA revealed no association reaching the P < or = 0.05 threshold. In particular, HMGA2, CA3, EPOR, NME1 and TTN were associated with meat colour, pH and conductivity of loin 24 h postmortem; CA3 and MYPN exhibited association with ham weight and lean content (FOM) respectively at P-values of < 0.003 that correspond to false discovery rates of < 0.05. However, none of the genes showed significant associations for a particular trait across all populations. The study revealed statistical-genetic evidence for association of the functional candidate genes with traits related to meat quality and muscle deposition. The polymorphisms detected are not likely causal, but markers were identified that are in linkage disequilibrium with causal genetic variation within particular populations.
Recognition of the preclinical stages of metabolic diseases such as diabetes helps to prevent full development of the disease. In our research, we alter the diet composition of pigs to create a model of human metabolic disease. The objective of the current study was to identify plasma proteins and biologic mechanisms that differed in expression between pigs fed a 'cafeteria diet' (considered unhealthy; high in saturated fats) and those fed a 'Mediterranean diet' (considered healthy; high in unsaturated fats). Pigs fed the cafeteria diet showed increased plasma levels of proteins related to LDL ('bad cholesterol'), immune processes, blood clotting, and metal binding. The Mediterranean diet was associated with increased plasma quantities of proteins associated HDL particles ('good cholesterol'), binding of LDL particles, regulation of immune processes, and glycolysis. Pigs fed a cafeteria diet showed molecular signs of diabetes and atherosclerosis-even in the absence of clinical symptoms-which seemed to protect against the development of metabolic disorders. The current results suggest potential biomarkers of the early onset of metabolic syndromes. These biomarkers can help to reveal specific metabolic changes that precede the onset of diabetes, thus enabling the initiation of patient-specific interventions early during pathophysiologic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.