Infrared (IR) detectors have been fabricated consisting of antenna-coupled metal-oxide-metal diodes (ACMOMDs). These detectors were defined using electron beam lithography with shadow evaporation metal deposition. They are designed to be sensitive to the IR range and work at room temperature without cooling or biasing. In order to achieve large arrays of ACMOMDs, nanotransfer printing have been used to cover a large area with metal-oxide-metal (MOM) diodes and with antenna structures. The printed antenna structures consist of gold and aluminum and exhibit a low electrical resistivity. A large area array of MOM tunneling diodes with an ultrathin dielectric ( 3.6-nm aluminum oxide) has also been fabricated via the transfer-printing process. The MOM diodes exhibit excellent tunneling characteristics. Both direct and Fowler-Nordheim tunneling has been observed over eight orders of magnitude in current density. Static device parameters have been extracted via kinetic Monte Carlo simulations and have confirmed the existence of a dipole layer at the aluminum/aluminum oxide interface of the printed tunneling diodes. The mechanical yield of the transfer-printing process for the MOM tunneling diodes is almost a 100%, confirming that transfer printing is suitable for large area effective fabrication of these quantum devices.
A large area array of metal-oxide-metal (MOM) tunneling diodes with an ultrathin dielectric ($3.6 nm aluminum oxide) have been fabricated via a transfer-printing process. The MOM diodes exhibit an excellent tunneling behavior that is suitable for rectifying high-frequency ac current into direct current (dc). Direct tunneling and Fowler-Nordheim tunneling have been observed over eight orders of magnitude in current density. The ratio between forward and reverse current is as large as two orders of magnitude. Simulations have been carried out to extract the static device parameters and have confirmed the existence of a dipole layer at the aluminum/aluminum oxide interface of the printed tunneling diodes. Capacitance measurements have shown that the permittivity of the ultrathin aluminum oxide film is smaller than that of bulk aluminum oxide. The mechanical yield of the transfer-printing process is better than 80%, confirming that transfer printing is a promising candidate for the efficient fabrication of quantum devices over large areas.
Nanoscale metal-insulator-metal (MIM) diodes represent important devices in the fields of electronic circuits, detectors, communication, and energy, as their cutoff frequencies may extend into the "gap" between the electronic microwave range and the optical long-wave infrared regime. In this paper, we present a nanotransfer printing method, which allows the efficient and simultaneous fabrication of large-scale arrays of MIM nanodiode stacks, thus offering the possibility of low-cost mass production. In previous work, we have demonstrated the successful transfer and electrical characterization of macroscopic structures. Here, we demonstrate for the first time the fabrication of several millions of nanoscale diodes with a single transfer-printing step using a temperature-enhanced process. The electrical characterization of individual MIM nanodiodes was performed using a conductive atomic force microscope (AFM) setup. Our analysis shows that the tunneling current is the dominant conduction mechanism, and the electrical measurement data agree well with experimental data on previously fabricated microscale diodes and numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.