This paper introduces a new test case for compressor aerodynamics. The dataset is provided for the Dresden four-stage Low-Speed Research Compressor (LSRC), which was put into operation in 1995. The compressor consists of four identical stages, which are preceded by an inlet guide vane. The data set will be provided for the reference blading of the compressor with cantilevered stator vanes. This blading was developed on the basis of the profiles of a middle stage of a high-pressure compressor of a jet engine. This paper makes available the blading geometry as well as a variety of flow field measurement results. This includes the compressor map, selected pressure distributions and other results of flow field measurements with conventional techniques (e.g. Pitot probes, 5-hole probes). Furthermore different aspects of blade row interactions were addressed in this compressor within recent years. The periodical unsteady flow field within a selected rotor blade row was investigated using Laser-Doppler-Anemometry. Further results on the unsteady profile pressures and profile boundary layers will be provided. Supplementary, numerical results will be compared to the experiments. Results are available for several stages of the compressor and different operating points. With this test case a unique database for the aerodynamics in a multistage axial compressor will be provided that can be used for the validation of numerical codes.
The present paper describes the design of a new set of blades for the four-stage axial-flow low-speed research compressor (LSRC) at the TU Dresden. The compressor contains nine blade rows: IGV, four rotors and four cantilevered stators designed as repeating stages. The compressor was originally designed and built in the German AG Turbo project. In recent years fourteen builds of the compressor were built and tested [1]. The new design of the NGV (Build A15) has increased pressure ratio and loading compared to the previous builds. The design was performed using a method giving three-dimensionally optimised blades achieving better efficiency than the previous builds with sufficient operating range despite increased loading. The numerical analysis was carried out using a Rolls-Royce 3D-Navier-Stokes solver at design and off-design inlet conditions. The experimental investigations were carried out by the Technical University of Dresden. Overall performance was measured for different speeds and different back-pressures up to compressor stall. Flow field details were measured at a design and a close-to-stall condition using static pressure probes on the blade suction and pressure surface and secondary flow measurements using 5-hole probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.