Purpose: The effect of high altitude ( ≥ 1500 m) and its potential association with mortality by COVID-19 remains controversial. We assessed the effect of high altitude on the survival/discharge of COVID-19 patients requiring intensive care unit (ICU) admission for mechanical ventilation compared to individuals treated at sea level. Methods: A retrospective cohort multi-center study of consecutive adults patients with a positive RT-PCR test for COVID-19 who were mechanically ventilated between March and November 2020. Data were collected from two sea-level hospitals and four high-altitude hospitals in Ecuador. The primary outcome was ICU and hospital survival/discharge. Survival analysis was conducted using semi-parametric Cox proportional hazards models. Results: Of the study population (n = 670), 35.2% were female with a mean age of 58.3 ± 12.6 years. On admission, high-altitude patients were more likely to be younger (57.2 vs. 60.5 years old), presented with less comorbidities such as hypertension (25.9% vs. 54.9% with p-value <.001) and diabetes mellitus (20.5% vs. 37.2% with p-value <.001), less probability of having a capillary refill time > 3 sec (13.7% vs. 30.1%, p-value <.001), and less severity-of-illness condition (APACHE II score, 17.5 ± 8.1 vs. 20 ± 8.2, p < .01). After adjusting for key confounders high altitude is associated with significant higher probabilities of ICU survival/discharge (HR: 1.74 [95% CI: 1.46-2.08]) and hospital survival/discharge (HR: 1.35 [95% CI: 1.18-1.55]) than patients treated at sea level. Conclusions: Patients treated at high altitude at any time point during the study period were 74% more likely to experience ICU survival/discharge and 35% more likely to experience hospital survival/discharge than to the sea-level group. Possible reasons for these findings are genetic and physiological adaptations due to exposure to chronic hypoxia.
Background Obesity is a common chronic comorbidity of patients with COVID-19, that has been associated with disease severity and mortality. COVID-19 at high altitude seems to be associated with increased rate of ICU discharge and hospital survival than at sea-level, despite higher immune levels and inflammation. The primary aim of this study was to investigate the survival rate of critically ill obese patients with COVID-19 at altitude in comparison with overweight and normal patients. Secondary aims were to assess the predictive factors for mortality, characteristics of mechanical ventilation setting, extubation rates, and analytical parameters. Methods This is a retrospective cohort study in critically ill patients with COVID-19 admitted to a hospital in Quito-Ecuador (2,850 m) from Apr 1, 2020, to Nov 1, 2021. Patients were cathegorized as normal weight, overweight, and obese, according to body mass index [BMI]). Results In the final analysis 340 patients were included, of whom 154 (45%) were obese, of these 35 (22.7%) were hypertensive and 25 (16.2%) were diabetic. Mortality in obese patients (31%) was lower than in the normal weight (48%) and overweight (40%) groups, but not statistically significant (p = 0.076). At multivariable analysis, in the overall population, older age (> 50 years) was independent risk factor for mortality (B = 0.93, Wald = 14.94, OR = 2.54 95%CI = 1.58–4.07, p < 0.001). Ferritin and the neutrophil/lymphocyte ratio were independent predictors of mortality in obese patients. Overweight and obese patients required more positive and-expiratory pressure compared to normal-weight patients. In obese patients, plateau pressure and mechanical power were significantly higher, whereas extubation failure was lower as compared to overweight and normal weight. Conclusions This preliminary study suggests that BMI was not associated with mortality in critically ill patients at high altitude. Age was associated with an increase in mortality independent of the BMI. Biomarkers such as ferritin and neutrophils/lymphocytes ratio were independent predictors of mortality in obese patients with COVID-19 at high altitude.
La pandemia por SARS-Cov-2, que inicialmente se planteó como una afección predominantemente respiratoria, se ha convertido en una noxa con manifestaciones en múltiples órganos, el factor común para la llegada del virus a los mismos son los receptores ACE 2, que es por dónde el virus ingresa a nuestras células.
El 31 de diciembre, en Wuhan-China, se reportó que 27 personas habían sido diagnosticadas con una neumonía de causa desconocida, el 7 de enero de 2020 los científicos chinos aislaron el virus causante de la enfermedad, un coronavirus beta que se denominó SARS-CoV-2. El 11 de marzo de 2020, la OMS declara al COVID-19 como pandemia. En Ecuador, el 29 de febrero se anunció el primer caso confirmado de coronavirus, y el 13 de marzo se registró la primera muerte por COVID-19 en el país. En Quito, el primer hospital de la salud pública en recibir pacientes infectados fue el Hospital Pablo Arturo Suárez. El 1 de abril del 2020, la terapia intensiva recibe su primer paciente; para ello se realizó cambios estructurales para tener un centro con bioseguridad nivel 3 y se redactó un protocolo de manejo; de ello, es relevante decir que ante una entidad nueva y desconocida, la aplicación de los conocimientos en ciencias básicas y fisiopatología hizo que seamos el único hospital que adoptó el uso de corticosteroides y anticoagulación total desde el inicio de la pandemia, medidas terapéuticas en ese momento inciertas y controversiales.
El sistema inmunitario es nuestro medio de defensa contra la sepsis, el cual mantiene la homeostasis a través de diversas funciones que requieren un control preciso de las vías celulares y metabólicas. Tal es así, que se han definido mejor estas vías metabólicas: las células inmunes dependen de la β-oxidación y la fosforilación oxidativa como fuentes de energía para la producción de ATP para conservar el equilibrio celular. Sin embargo, una vez estimulados, los leucocitos cambian su metabolismo a través del efecto Warburg, por lo que hay aumento en la glucólisis aeróbica seguido de la producción de lactato. Se ha determinado, como el lactato puede tener un efecto inmunosupresor en el microambiente y como estos cambios metabólicos conllevan a la supresión inmune y la progresión de la infección. Comprender los factores que intervienen en esta relación entre el sistema inmunitario y el lactato aportará nuevos conocimientos para modular la inflamación, la inmunidad celular, recuperación en los procesos sépticos y avances en la terapéutica. Palabras clave: Lactato, inmunosupresión, sepsis, efecto Warburg. (DeCS-BIREME)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.