When aerobic granular sludge is applied for industrial wastewater treatment, different soluble substrates can be present. For stable granular sludge formation on volatile fatty acids (e.g. acetate), production of storage polymers under anaerobic feeding conditions has been shown to be important. This prevents direct aerobic growth on readily available chemical oxygen demand (COD), which is thought to result in unstable granule formation. Here, we investigate the impact of acetate, methanol, butanol, propanol, propionaldehyde, and valeraldehyde on granular sludge formation at 35 °C. Methanogenic archaea, growing on methanol, were present in the aerobic granular sludge system. Methanol was completely converted to methane and carbon dioxide by the methanogenic archaeum Methanomethylovorans uponensis during the 1-h anaerobic feeding period, despite the relative high dissolved oxygen concentration (3.5 mg O2 L−1) during the subsequent 2-h aeration period. Propionaldehyde and valeraldehyde were fully disproportionated anaerobically into their corresponding carboxylic acids and alcohols. The organic acids produced were converted to storage polymers, while the alcohols (produced and from influent) were absorbed onto the granular sludge matrix and converted aerobically. Our observations show that easy biodegradable substrates not converted anaerobically into storage polymers could lead to unstable granular sludge formation. However, when the easy biodegradable COD is absorbed in the granules and/or when the substrate is converted by relatively slow growing bacteria in the aerobic period, stable granulation can occur.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-014-6358-3) contains supplementary material, which is available to authorized users.
In aerobic granular sludge (AGS) systems, different-sized microbial aggregates having different solids retention time (SRT) coexist in the same reactor compartment and are subjected to the same influent wastewater. Thus, the AGS system provides a unique ecosystem to study the importance of local (species sorting) and regional (immigration) processes in bacterial community assembly. The microbial communities of different-sized aggregates (flocs <0.2 mm, small granules (0.2–1.0 mm) and large granules >1.0 mm), influent wastewater, excess sludge and effluent of a full-scale AGS plant were characterized over a steady-state operation period of 6 months. Amplicon sequencing was integrated with mass balance to determine the SRT and net growth rate of operational taxonomic units (OTUs). We found strong evidence of species sorting as opposed to immigration, which was significantly higher at short SRT (i.e., flocs and small granules) than that at long SRT (large granules). Rare OTUs in wastewater belonging to putative functional groups responsible for nitrogen and phosphorus removal were progressively enriched with an increase in microbial aggregates size. In contrast, fecal- and sewage infrastructure-derived microbes progressively decreased in relative abundance with increase in microbial aggregate size. These findings highlight the importance of AGS as a unique model ecosystem to study fundamental microbial ecology concepts.
The long-and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescence in situ hybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance of Nitrospira sp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), "Candidatus Accumulibacter phosphatis" bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonas sp.) and phosphate removal ("Candidatus Accumulibacter").Numerous wastewaters, like those generated in seafood canning, pickling, and cheese-processing industries, can contain significant amounts of inorganic dissolved salts (14). The use of seawater for toilet flushing in ships, offshore installations, and regions with problems related to water supply also introduces salts into freshwater. Wastewaters with a high salt content require the activity of salt-tolerant microorganisms which may not be present in high numbers in microbial inocula from sewage treatment plants. Salt ions exert high osmotic pressure on the microorganisms, and most of the freshwater-based microbial populations are unable to survive at these high osmotic pressures and either die or become dormant under these conditions (40). Besides that, inorganic salts can affect the structure and settling properties of microbial flocs as well as the maximum solubility of oxygen and its transfer to the liquid phase, which can lead to oxygen limitation. Consequently, high salt concentrations have a negative influence on existing biological wastewater treatment plants, affecting organic matter, nitrogen, and phosphorus removal (17). So far, most studies on chemical oxygen demand (COD), N, and P removal from saline wastewa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.