Anaerobic ammonium oxidation (anammox) bacteria contribute significantly to the global nitrogen cycle and play a major role in sustainable wastewater treatment. Anammox bacteria convert ammonium (NH4+) to dinitrogen gas (N2) using intracellular electron acceptors such as nitrite (NO2−) or nitric oxide (NO). However, it is still unknown whether anammox bacteria have extracellular electron transfer (EET) capability with transfer of electrons to insoluble extracellular electron acceptors. Here we show that freshwater and marine anammox bacteria couple the oxidation of NH4+ with transfer of electrons to insoluble extracellular electron acceptors such as graphene oxide or electrodes in microbial electrolysis cells. 15N-labeling experiments revealed that NH4+ was oxidized to N2 via hydroxylamine (NH2OH) as intermediate, and comparative transcriptomics analysis revealed an alternative pathway for NH4+ oxidation with electrode as electron acceptor. Complete NH4+ oxidation to N2 without accumulation of NO2− and NO3− was achieved in EET-dependent anammox. These findings are promising in the context of implementing EET-dependent anammox process for energy-efficient treatment of nitrogen.
To date, six candidate genera of anaerobic ammonium-oxidizing (anammox) bacteria have been identified, and numerous studies have been conducted to understand their ecophysiology. In this study, we examined the physiological characteristics of an anammox bacterium in the genus 'Candidatus Jettenia'. Planctomycete KSU-1 was found to be a mesophilic (20-42.5°C) and neutrophilic (pH 6.5-8.5) bacterium with a maximum growth rate of 0.0020 h(-1) . Planctomycete KSU-1 cells showed typical physiological and structural features of anammox bacteria; i.e. (29) N2 gas production by coupling of (15) NH4 (+) and (14) NO2 (-) , accumulation of hydrazine with the consumption of hydroxylamine and the presence of anammoxosome. In addition, the cells were capable of respiratory ammonification with oxidation of acetate. Notably, the cells contained menaquinone-7 as a dominant respiratory quinone. Proteomic analysis was performed to examine underlying core metabolisms, and high expressions of hydrazine synthase, hydrazine dehydrogenase, hydroxylamine dehydrogenase, nitrite/nitrate oxidoreductase and carbon monoxide dehydrogenase/acetyl-CoA synthase were detected. These proteins require iron or copper as a metal cofactor, and both were dominant in planctomycete KSU-1 cells. On the basis of these experimental results, we proposed the name 'Ca. Jettenia caeni' sp. nov. for the bacterial clade of the planctomycete KSU-1.
In aerobic granular sludge (AGS)
systems, different-sized microbial
aggregates having different solids retention time (SRT) coexist in
the same reactor compartment and are subjected to the same influent
wastewater. Thus, the AGS system provides a unique ecosystem to study
the importance of local (species sorting) and regional (immigration)
processes in bacterial community assembly. The microbial communities
of different-sized aggregates (flocs <0.2 mm, small granules (0.2–1.0
mm) and large granules >1.0 mm), influent wastewater, excess sludge
and effluent of a full-scale AGS plant were characterized over a steady-state
operation period of 6 months. Amplicon sequencing was integrated with
mass balance to determine the SRT and net growth rate of operational
taxonomic units (OTUs). We found strong evidence of species sorting
as opposed to immigration, which was significantly higher at short
SRT (i.e., flocs and small granules) than that at long SRT (large
granules). Rare OTUs in wastewater belonging to putative functional
groups responsible for nitrogen and phosphorus removal were progressively
enriched with an increase in microbial aggregates size. In contrast,
fecal- and sewage infrastructure-derived microbes progressively decreased
in relative abundance with increase in microbial aggregate size. These
findings highlight the importance of AGS as a unique model ecosystem
to study fundamental microbial ecology concepts.
Summary
Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of ‘Ca. Kuenenia stuttgartiensis’ have been studied, those of other anammox bacteria are still poorly understood.
NO2− reduction to NO is considered to be the first step in the anammox metabolism of ‘Ca. K. stuttgartiensis’, however, ‘Ca. Brocadia’ lacks the genes that encode canonical NO‐forming nitrite reductases (NirS or NirK) in its genome, which is different from ‘Ca. K. stuttgartiensis’. Here, we studied the anammox metabolism of ‘Ca. Brocadia sinica’. 15N‐tracer experiments demonstrated that ‘Ca. B. sinica’ cells could reduce
NO2− to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of
NO2− reduction, was investigated using a purified ‘Ca. B. sinica' hydrazine synthase (Hzs) and intact cells. Both the ‘Ca. B. sinica’ Hzs and cells utilized NH2OH and
NH4+, but not NO and
NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of ‘Ca. B. sinica’ is NH2OH‐dependent and different from the one of ‘Ca. K. stuttgartiensis’, indicating metabolic diversity of anammox bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.