ISG15 is an interferon (IFN)-α/β-induced ubiquitin-like protein. It exists as a free molecule, intracellularly and extracellularly, and conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human ISG15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular ISG15 is crucial in IFN-γ-dependent antimycobacterial immunity, while free intracellular ISG15 is crucial for USP18-mediated downregulation of IFN-α/β signalling. Here we describe ISG15-deficient patients who display no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from ISG15-deficient patients display enhanced antiviral protection, and expression of ISG15 attenuates viral resistance to WT control levels. The species-specific gain-of-function in antiviral immunity observed in ISG15 deficiency is explained by the requirement of ISG15 to sustain USP18 levels in humans, a mechanism not operating in mice.
In 2016, a total of 18 human infections with influenza A(H3N2) virus occurred after exposure to influenza-infected swine at 7 agricultural fairs. Sixteen of these cases were the result of infection by a reassorted virus with increasing prevalence among US swine containing a hemagglutinin gene from 2010–11 human seasonal H3N2 strains.
Human CMV infections are a major health risk in patients with dysfunctional or compromised immunity, especially in patients with NK cell deficiencies, as these are frequently associated with high morbidity and mortality. In experimental murine CMV (MCMV) infections, Ly49H activation receptors on C57BL/6 (B6) NK cells engage m157 viral ligands on MCMV-infected cells and initiate dominant virus control. In this study, we report that MCMV resistance in MA/My relies on Ly49H-independent NK cell-mediated control of MCMV infection as NK cells in these mice do not bind anti-Ly49H mAb or soluble m157 viral ligands. We genetically compared MA/My resistance with MCMV susceptibility in genealogically and NK gene complex-Ly49 haplotype-related C57L mice. We found that MCMV resistance strongly associated with polymorphic H2k-linked genes, including MHC and non-MHC locations by analysis of backcross and intercross progeny. The H2b haplotype most frequently, but not absolutely, correlated with MCMV susceptibility, thus confirming a role for non-MHC genes in MCMV control. We also demonstrate a definite role for NK cells in H2k-type MCMV resistance because their removal from C57L.M-H2k mice before MCMV infection diminished immunity. NK gene complex-linked polymorphisms, however, did not significantly influence MCMV control. Taken together, effective NK cell-mediated MCMV control in this genetic system required polymorphic H2k genes without need of Ly49H-m157 interactions.
Ly49H+ NK cells play a critical role in innate antiviral immune responses to murine CMV (MCMV). Ly49Hb6 recognition of MCMV-encoded m157 on infected cells activates natural killing required for host resistance. We show that mAb 3D10 (anti-Ly49H) recognizes comparable subsets of NK cells from New Zealand White (NZW), New Zealand Black (NZB), and C57BL/6 spleens. However, virus levels in the spleens of MCMV-infected NZW and NZB mice differed greatly. We found that MCMV replication in infected NZW spleens was limited through NK cells. Alternately, NZB mice were profoundly susceptible to MCMV infection. Although 3D10 mAb injections given before infection interfere with Cmv1-type resistance in C57BL/6 mice, similar mAb injections did not affect NZW resistance, likely because NZW NK cell receptors did not bind MCMV-encoded m157. Instead, anti-MCMV host defenses in hybrid NZ offspring were associated with multiple chromosome locations including several putative quantitative trait loci that did not overlap with H-2 or NK gene complex loci. This study revealed a novel pathway used by NK cells to defend against MCMV infection. Thus, the importance of Ly49H in MCMV infection may be shaped by other additional background genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.