This paper describes the design, development and application of microfluidic "thin chips" fabricated from PDMS. Thin chips consist of multiple layers of PDMS chemically bonded onto each other. Unlike thicker PDMS chips that suffer from lack of sensitivity due to PDMS absorption in the VIS and UV range, the thinness of these chips allows for the detection of chromophoric species within the microchannel via an external fiber optics detection system. C18-modified reversed-phase silica particles are packed into the microchannel using a temporary taper created by a magnetic valve and separations using both pressure- and electrochromatographic-driven methods are detailed.
The first detailed examination of flow injection-capillary electrophoresis (FI-CE) active parameters and their interactions via response surface methodology (RSM) is presented. Specifically, RSM in the form of a Box-Behnken design was implemented to effectively predict the significance of capillary length, voltage and injection volume on the optimization of an in-house built FI-CE analyzer. Initial studies were performed assessing peak height and peak shape of the model compound N,N-dimethylformamide. Optimum model conditions were then derived and used in the model separation of two small molecules, nicotinamide adenine dinucleotide, reduced form (NADH) and benzenesulfonamide. By implementing the RSM approach, detailed examination of active FI-CE parameters was possible, including the ability to reveal a significant interactive effect. This work is not only highly significant for advancing FI-CE developments, but instructive for investigators actively exploring other coupled analytical techniques and associated experimental parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.