Animal experiments are essential for the elucidation of biological-cellular mechanisms in the context of orthodontic tooth movement (OTM). So far, however, no studies comparatively assess available mouse models regarding their suitability. OTM of first upper molars was induced in C57BL/6 mice either via an elastic band or a NiTi coil spring for three, seven or 12 days. We assessed appliance survival rate, OTM and periodontal bone loss (µCT), root resorptions, osteoclastogenesis (TRAP + area) and local expression of OTM-related genes (RT-qPCR). Seven days after the elastic bands were inserted, 87% were still in situ, but only 27% after 12 days. Survival rate for the NiTi coil springs was 100% throughout, but 8.9% of the animals did not survive. Both methods induced significant OTM, which was highest after 12 (NiTi spring) and 7 days (band), with a corresponding increase in local gene expression of OTM-related genes and osteoclastogenesis. Periodontal bone loss and root resorptions were not induced at a relevant extent by neither of the two procedures within the experimental periods. To induce reliable OTM in mice beyond 7 days, a NiTi coil spring is the method of choice. The elastic band method is recommended only for short-term yes/no-questions regarding OTM.
SUMMARY Necrobiosis Lipoidica Diabeticorum (NLD) and Pigmented Pretibial Patches (PPP) are characterized by their association with diabetes mellitus, by their pretibial predilection, and by vascular alterations compatible with diabetic microangiopathy. Despite differences in the gross and microscopic morphology, both may be considered part of a spectrum of cutaneous lesions for which the term diabetic dermangiopathy is suggested. Variants within this spectrum are reported, including 2 cases with widespread lesions of PPP, occurring in areas other than pretibial.
Summary Background In orthodontic tooth movement (OTM), pseudo-inflammatory processes occur that are similar to those of nicotine-induced periodontitis. Previous studies have shown that nicotine accelerates OTM, but induces periodontal bone loss and dental root resorption via synergistically increased osteoclastogenesis. This study aimed to investigate the role of hypoxia-inducible factor 1 alpha (HIF-1α) in nicotine-induced osteoclastogenesis during OTM. Materials/Methods Male Fischer-344 rats were treated with l-Nicotine (1.89 mg/kg/day s.c., N = 10) or NaCl solution (N = 10). After a week of premedication, a NiTi spring was inserted to mesialize the first upper left molar. The extent of dental root resorption, osteoclastogenesis, and HIF-1α protein expression was determined by (immuno)histology, as well as bone volume (BV/TV) and trabecular thickness (TbTh) using µCT. Receptor activator of nuclear factor of activated B-cells ligand (RANK-L), osteoprotegerin (OPG), and HIF-1α expression were examined at the protein level in periodontal ligament fibroblasts (PDLF) exposed to pressure, nicotine and/or hypoxia, as well as PDLF-induced osteoclastogenesis in co-culture experiments with osteoclast progenitor cells. Results Nicotine favoured dental root resorptions and osteoclastogenesis during OTM, while BV/TV and TbTh were only influenced by force. This nicotine-induced increase does not appear to be mediated by HIF-1α, since HIF-1α was stabilized by force application and hypoxia, but not by nicotine. The in vitro data showed that the hypoxia-induced increase in RANK-L/OPG expression ratio and PDLF-mediated osteoclastogenesis was less pronounced than the nicotine-induced increase. Conclusions Study results indicate that the nicotine-induced increase in osteoclastogenesis and periodontal bone resorption during OTM may not be mediated by hypoxic effects or HIF-1α stabilization in the context of nicotine-induced vasoconstriction, but rather by an alternative mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.