for providing expert advice during the post-workshop review stage. We thank the experts involved in the New Guinea assessment workshop, for their information on species with distributions spanning Torres
Evolutionary history can exert a profound influence on ecological communities, but few generalities have emerged concerning the relationships among phylogeny, community membership, and niche evolution. We compared phylogenetic community structure and niche evolution in three lizard clades (Ctenotus skinks, agamids, and diplodactyline geckos) from arid Australia. We surveyed lizard communities at 32 sites in the northwestern Great Victoria Desert and generated complete species-level molecular phylogenies for regional representatives of the three clades. We document a striking pattern of phylogenetic evenness within local communities for all groups: pairwise correlations in species abundance across sites are negatively related to phylogenetic similarity. By modeling site suitability on the basis of species' habitat preferences, we demonstrate that phylogenetic evenness generally persists even after controlling for habitat filtering among species. This phylogenetic evenness is coupled with evolutionary lability of habitat-associated traits, to the extent that closely related species are more divergent in habitat use than distantly related species. In contrast, lizard diets are phylogenetically conserved, and pairwise dietary overlap between species is negatively related to phylogenetic distance in two of the three clades. Our results suggest that contemporary and historical species interactions have led to similar patterns of community structure across multiple clades in one of the world's most diverse lizard communities.
Our knowledge of the conservation status of reptiles, the most diverse class of terrestrial vertebrates, has improved dramatically over the past decade, but still lags behind that of the other tetrapod groups. Here, we conduct the first comprehensive evaluation (~92% of the world's ~1714 described species) of the conservation 1 Joint senior authors. D.G. Chapple et al.
Australia hosts approximately 10% of the world's reptile species, the largest number of any country. Despite this and evidence of widespread decline, the first comprehensive assessment of the conservation status of Australian terrestrial squamates (snakes and lizards) was undertaken only recently. Here we apply structured expert elicitation to the 60 species assessed to be in the highest IUCN threat categories to estimate their probability of extinction by 2040. We also assessed the probability of successful reintroduction for two Extinct in the Wild (EW) Christmas Island species with trial reintroductions underway. Collation and analysis of expert opinion indicated that six species are at high risk (.50%) of becoming extinct within the next 20 years, and up to 11 species could be lost within this timeframe unless management improves. The consensus among experts was that neither of the EW species were likely to persist outside of small fenced areas without a significant increase in resources for intense threat management. The 20 most imperilled species are all restricted in range, with three occurring only on islands. The others are endemic to a single state, with 55% occurring in Queensland. Invasive species (notably weeds and introduced predators) were the most prevalent threats, followed by agriculture, natural system modifications (primarily fire) and climate change. Increased resourcing and management intervention are urgently needed to avert the impending extinction of Australia's imperilled terrestrial reptiles.
-The Northern Kimberley region in north-western Australia has high biodiversity and conservation values, including a rich herpetofauna with high levels of endemism. To date, the numerous islands off the coast have been little surveyed. We surveyed 24 of the largest islands along the Kimberley coast for reptiles between 2007 and 2010, to improve our understanding of biogeographical patterns of the region and to locate populations of species that may be threatened by factors including changed fi re regimes and Cane Toad invasion. We recorded 79 species of terrestrial reptiles. Species richness ranged from 14 to 32 taxa per island (mean = 22), and tended to increase with island area. Many taxa (36.7%) were Northern Kimberley endemics, 10 of which are only known from island populations. There were numerous new records for islands, range extensions and the discovery of at least three new taxa. Classifi cation based on species presence/absence data identifi ed several distinct clusters of islands, with geographical location of islands, extent of rugged, rocky habitat and climatic gradients at a regional scale having important infl uences on reptile communities. The main cluster of nine islands with the greatest species richness, including richness of Northern Kimberley endemics, was located in the high rainfall zone of the north-west Kimberley. Islands in this cluster were also generally larger in size and they were the most rugged. Island clusters in the mostly drier areas to the north and south had less diversity and often different taxa to the north-west Kimberley cluster. The remaining islands-Adolphus, Sir Graham Moore, Mary and Kingfi sher-were all distinct in the classifi cation analysis. The Kimberley islands harbour unique taxa and reptile assemblages, as well as numerous species known to be vulnerable to Cane Toad toxins and, as such, are important conservation refuges. Careful consideration is required of any proposals to develop the islands, and ongoing surveillance and quarantine is necessary to prevent the introduction of invasive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.