Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm 2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.
In this study, high-density polyethylene (HDPE) surfaces were treated with plasma to enhance the adhesion of a water-based paint. A custom-built cold atmospheric pressure plasma jet (CAPPJ) device using a neon transformer as its power source was developed and used in the surface treatment. The jet nozzle of the device was made from polytetrafluoroethylene with two bare stainless-steel electrodes positioned laterally through the nozzle and opposite each other with a 1 mm gap. Gas was allowed to pass through the nozzle, exiting through a 1 mm diameter hole where a plasma jet is ejected through the arc from the electrodes. The effect of plasma treatment on HDPE surfaces was determined. Air and nitrogen were used as the process gases and exposure times were also varied. Hydrophilicity of the surface increased with longer plasma exposure with a corresponding 50% increase in surface free energy compared to the untreated surface. From Fourier transform infrared and x-ray photoelectron spectroscopy analysis, it was seen that plasma treatment introduced oxygen containing functionalities onto the surface. Increase in adhesion of a water-based paint was observed for plasma-treated HDPE sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.