This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
The structures reported here clarify aspects of the active site and indicate key features of the catalytic mechanism, including substrate coordination to one of the manganese ions and an orientational role for a neighboring histidine residue. Stereospecificity for L-amino acids is found to depend on their precise recognition at the active-site rim. Identification of a second arginine-binding site, remote from the active site, and associated conformational changes lead us to propose a regulatory role for this site in substrate hydrolysis.
a b s t r a c tO-glycosylation is a ubiquitous eukaryotic post-translational modification, whereas early reports of S-linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N-acetylglucosamine b-O-linked to Ser18, and an N-acetylhexosamine S-linked to C-terminal Cys43. The O-linked N-acetylglucosamine is essential for bacteriostatic activity, and the C-terminus is required for full potency (IC 50 2 nM). Genomic context analysis identified diverse putative glycopeptide bacteriocins in Firmicutes. One of these, the reputed lantibiotic sublancin, was shown to contain a hexose S-linked to Cys22.
The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (/␣) 8 barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 Å . In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 Å . Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS, 2 E.C. 2.5.1.54) catalyzes the condensation reaction between phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) (Fig. 1). This reaction is the first step in the shikimate pathway, which is used to synthesize chorismate, the precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, and of other important aromatic metabolites (1). The shikimate pathway is found in plants and microorganisms, and it has more recently been shown to function in apicomplexan parasites (49). As the shikimate pathway is absent in animals, the enzymes of this pathway have been identified as possible targets for the development of antimicrobial agents (2). Regulation of the catalytic activity of DAH7PS has been shown to be an important mechanism for control of cellular levels of aromatic compounds in microorganisms and plants (3).13 C NMR studies using whole cells of Escherichia coli have demonstrated that feedback inhibition of DAH7PS is the main mechanism for controlling carbon flow into the shikimate pathway (4). Different organisms employ various strategies for this feedback inhibition. E. coli, Salmonella typhimurium, and Neurospora crassa express three DAH7PS isozymes, each sensitive to a single aromatic amino acid (5, 6). In Saccharomyces cerevisiae, there are two DAH7PS isozymes; one is inhibited by phenylalanine, and the other is inhibited by tyrosine (7). Other org...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.