Abstract. A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.
Participatory planning applied to water resources has sparked significant interest and debate during the last decade. Recognition that models play a significant role in the formulation and implementation of design and management strategies has encouraged the profession to consider how such models can be best implemented. Shared Vision Planning (SVP) is a disciplined planning approach that combines traditional water resources planning methodologies with innovations such as structured public participation and the use of collaborative modeling, resulting in a more complete understanding and an integrative decision support tool. This study reviews these three basic components of SVP and explains how they are incorporated into a unified planning approach. The successful application of SVP is explored in three studies involving planning challenges: the National Drought Study, the Lake Ontario-St. Lawrence River Study, and the Apalachicola-ChattahoocheeFlint/Alabama-Coosa-Tallapoosa River Basin Study. The article concludes by summarizing the advantages and limitations of this planning approach.(KEY TERMS: collaborative planning; collaborative modeling; systems models; water management; water resources planning; adaptive management; participatory methodologies.)
Inland flood risk in the United States is most often conveyed through maps of 1% annual exceedance probability (AEP) or “100‐year” floodplains. However, monetary damages from flooding arise from a full distribution of events, including floods both larger and smaller than the 1% AEP event. Furthermore, floodplains are not static, since both the frequency and magnitude of flooding are likely to change in a warming climate. We explored the implications of a changing frequency and magnitude of flooding across a wide spectrum of flood events, using a sample of 376 watersheds in the United States where floodplains from multiple recurrence intervals have been mapped. Using an inventory of assets within these mapped floodplains, we first calculated expected annual damages (EADs) from flooding in each watershed under baseline climate conditions. We find that the EAD is typically a factor of 5–7 higher than the expected damages from 100‐year events alone and that much of these damages are attributable to floods smaller than the 1% AEP event. The EAD from flooding typically increases by 25–50% under a 1 °C warming scenario and in most regions more than double under a 3 °C warming scenario. Further increases in EAD are not as pronounced beyond 3 °C warming, suggesting that most of the projected increases in flood damages will have already occurred, for most regions of the country, by that time. Adaptations that protect against today's 100‐year flood will have increasing benefits in a warmer climate by also protecting against more frequent, smaller events.
Abstract. A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing flooding damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability flood events at 57 116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $ 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. This work uses relatively conservative assumptions and methods that ultimately affect damage estimates; future work is needed to test sensitivity related to these methodological choices (e.g., more sophisticated downscaling methods, use of multiple hydrologic models, and consideration of a wider range of flood magnitudes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.